Normalized defining polynomial
\( x^{15} - 3 x^{14} - 114 x^{13} + 165 x^{12} + 5277 x^{11} + 309 x^{10} - 119015 x^{9} - 163851 x^{8} + 1201692 x^{7} + 3201011 x^{6} - 2654712 x^{5} - 17750946 x^{4} - 19922550 x^{3} - 3294435 x^{2} + 4535715 x + 831403 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3091133177133909578645502426129=3^{20}\cdot 7^{10}\cdot 11^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $107.81$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(693=3^{2}\cdot 7\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{693}(64,·)$, $\chi_{693}(1,·)$, $\chi_{693}(529,·)$, $\chi_{693}(631,·)$, $\chi_{693}(466,·)$, $\chi_{693}(592,·)$, $\chi_{693}(625,·)$, $\chi_{693}(562,·)$, $\chi_{693}(499,·)$, $\chi_{693}(214,·)$, $\chi_{693}(247,·)$, $\chi_{693}(25,·)$, $\chi_{693}(58,·)$, $\chi_{693}(379,·)$, $\chi_{693}(190,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{215425782410011849433604372193490013574} a^{14} + \frac{44087925091157478556735995716545418357}{215425782410011849433604372193490013574} a^{13} - \frac{24492180681615608234255414944310603061}{215425782410011849433604372193490013574} a^{12} + \frac{203185972427616345904936937841769485}{1607655092612028727116450538757388161} a^{11} + \frac{1276772543324158003675221037352420694}{107712891205005924716802186096745006787} a^{10} - \frac{73566715492660463632853925194138981471}{215425782410011849433604372193490013574} a^{9} - \frac{37989194393314503047335337951111689713}{107712891205005924716802186096745006787} a^{8} + \frac{62958159753364753905078861273594348653}{215425782410011849433604372193490013574} a^{7} + \frac{23249882737170747775707796806974831719}{107712891205005924716802186096745006787} a^{6} + \frac{26355745021474411685349676979328047276}{107712891205005924716802186096745006787} a^{5} + \frac{22930629291761277321122099836877746839}{107712891205005924716802186096745006787} a^{4} + \frac{34707375451218952534878240828859771552}{107712891205005924716802186096745006787} a^{3} - \frac{51549587519271903953201958596666342051}{107712891205005924716802186096745006787} a^{2} + \frac{12861101179154450086376025664985170055}{107712891205005924716802186096745006787} a + \frac{1187108358755416700450704133809464525}{3215310185224057454232901077514776322}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5252645612.166227 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 15 |
| The 15 conjugacy class representatives for $C_{15}$ |
| Character table for $C_{15}$ |
Intermediate fields
| 3.3.3969.1, \(\Q(\zeta_{11})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{3}$ | R | $15$ | R | R | $15$ | $15$ | $15$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{5}$ | $15$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{3}$ | $15$ | $15$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{3}$ | $15$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.15.20.100 | $x^{15} + 39 x^{14} + 42 x^{13} + 55 x^{12} + 15 x^{11} + 57 x^{10} + 50 x^{9} + 15 x^{8} + 45 x^{7} + 35 x^{6} + 51 x^{5} + 45 x^{4} + 24 x^{3} + 69 x^{2} + 69 x + 73$ | $3$ | $5$ | $20$ | $C_{15}$ | $[2]^{5}$ |
| $7$ | 7.15.10.3 | $x^{15} - 98 x^{9} + 2401 x^{3} - 268912$ | $3$ | $5$ | $10$ | $C_{15}$ | $[\ ]_{3}^{5}$ |
| $11$ | 11.15.12.1 | $x^{15} + 165 x^{10} + 5324 x^{5} + 323433$ | $5$ | $3$ | $12$ | $C_{15}$ | $[\ ]_{5}^{3}$ |