Normalized defining polynomial
\( x^{15} - 3 x^{14} - 114 x^{13} + 130 x^{12} + 5361 x^{11} + 3249 x^{10} - 120562 x^{9} - 259107 x^{8} + 1090119 x^{7} + 4464049 x^{6} + 785697 x^{5} - 20966655 x^{4} - 43817519 x^{3} - 38133582 x^{2} - 14510214 x - 1701701 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3091133177133909578645502426129=3^{20}\cdot 7^{10}\cdot 11^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $107.81$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(693=3^{2}\cdot 7\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{693}(256,·)$, $\chi_{693}(1,·)$, $\chi_{693}(130,·)$, $\chi_{693}(67,·)$, $\chi_{693}(4,·)$, $\chi_{693}(520,·)$, $\chi_{693}(64,·)$, $\chi_{693}(394,·)$, $\chi_{693}(331,·)$, $\chi_{693}(268,·)$, $\chi_{693}(16,·)$, $\chi_{693}(631,·)$, $\chi_{693}(379,·)$, $\chi_{693}(445,·)$, $\chi_{693}(190,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{23} a^{13} - \frac{4}{23} a^{12} - \frac{6}{23} a^{11} - \frac{4}{23} a^{10} + \frac{3}{23} a^{9} + \frac{1}{23} a^{8} - \frac{7}{23} a^{7} + \frac{7}{23} a^{6} - \frac{11}{23} a^{5} + \frac{5}{23} a^{4} - \frac{5}{23} a^{3} + \frac{3}{23} a^{2} - \frac{6}{23} a$, $\frac{1}{48832310178344731711209476886942293} a^{14} - \frac{857214419196307774359970567103176}{48832310178344731711209476886942293} a^{13} - \frac{7692004180898148352130424576927493}{48832310178344731711209476886942293} a^{12} - \frac{9286600789288271915491094856827578}{48832310178344731711209476886942293} a^{11} - \frac{5560641986666316085277152692497336}{48832310178344731711209476886942293} a^{10} - \frac{7737993590016632843735441639901439}{48832310178344731711209476886942293} a^{9} - \frac{380942793957344745814920672978286}{48832310178344731711209476886942293} a^{8} - \frac{4423804318228992982799822019172730}{48832310178344731711209476886942293} a^{7} + \frac{17331774212752794386427487262750922}{48832310178344731711209476886942293} a^{6} - \frac{13112703197493905309745334169841776}{48832310178344731711209476886942293} a^{5} - \frac{2212856433132188205830716536389181}{48832310178344731711209476886942293} a^{4} - \frac{5001783006738380849211138819257270}{48832310178344731711209476886942293} a^{3} - \frac{19718348180800337841133814842322716}{48832310178344731711209476886942293} a^{2} - \frac{17453745302589758735946848255575249}{48832310178344731711209476886942293} a - \frac{1948715854695564795707485622794}{6915778243640381208215476120513}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12250984499.438423 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 15 |
| The 15 conjugacy class representatives for $C_{15}$ |
| Character table for $C_{15}$ |
Intermediate fields
| 3.3.3969.2, \(\Q(\zeta_{11})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $15$ | R | ${\href{/LocalNumberField/5.5.0.1}{5} }^{3}$ | R | R | $15$ | $15$ | $15$ | ${\href{/LocalNumberField/23.1.0.1}{1} }^{15}$ | $15$ | $15$ | $15$ | $15$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{5}$ | $15$ | $15$ | $15$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.15.20.99 | $x^{15} + 42 x^{14} + 27 x^{13} + 31 x^{12} + 45 x^{11} + 45 x^{10} + 41 x^{9} + 30 x^{8} + 42 x^{7} + 8 x^{6} + 75 x^{5} + 18 x^{4} + 42 x^{3} + 24 x^{2} + 51 x + 19$ | $3$ | $5$ | $20$ | $C_{15}$ | $[2]^{5}$ |
| $7$ | 7.15.10.2 | $x^{15} - 2401 x^{3} + 67228$ | $3$ | $5$ | $10$ | $C_{15}$ | $[\ ]_{3}^{5}$ |
| $11$ | 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |