Properties

Label 15.15.3044920128...5625.1
Degree $15$
Signature $[15, 0]$
Discriminant $5^{18}\cdot 7^{10}\cdot 41^{4}$
Root discriminant $67.96$
Ramified primes $5, 7, 41$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 15T30

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![41, -1025, 5330, -820, -24600, -6172, 27215, 10925, -11115, -5375, 1656, 945, -60, -55, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^15 - 55*x^13 - 60*x^12 + 945*x^11 + 1656*x^10 - 5375*x^9 - 11115*x^8 + 10925*x^7 + 27215*x^6 - 6172*x^5 - 24600*x^4 - 820*x^3 + 5330*x^2 - 1025*x + 41)
 
gp: K = bnfinit(x^15 - 55*x^13 - 60*x^12 + 945*x^11 + 1656*x^10 - 5375*x^9 - 11115*x^8 + 10925*x^7 + 27215*x^6 - 6172*x^5 - 24600*x^4 - 820*x^3 + 5330*x^2 - 1025*x + 41, 1)
 

Normalized defining polynomial

\( x^{15} - 55 x^{13} - 60 x^{12} + 945 x^{11} + 1656 x^{10} - 5375 x^{9} - 11115 x^{8} + 10925 x^{7} + 27215 x^{6} - 6172 x^{5} - 24600 x^{4} - 820 x^{3} + 5330 x^{2} - 1025 x + 41 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $15$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[15, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(3044920128210025787353515625=5^{18}\cdot 7^{10}\cdot 41^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $67.96$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 7, 41$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{1251119879987585558537} a^{14} - \frac{558339126379490707545}{1251119879987585558537} a^{13} - \frac{568874619406211362145}{1251119879987585558537} a^{12} + \frac{295055075429149677690}{1251119879987585558537} a^{11} + \frac{426320540159555529266}{1251119879987585558537} a^{10} - \frac{441364877201845154725}{1251119879987585558537} a^{9} - \frac{44577383610546596282}{1251119879987585558537} a^{8} - \frac{65847497144216553373}{1251119879987585558537} a^{7} - \frac{441947524369294242261}{1251119879987585558537} a^{6} + \frac{288181877110776273561}{1251119879987585558537} a^{5} + \frac{346577238980642994655}{1251119879987585558537} a^{4} + \frac{181510421626272945379}{1251119879987585558537} a^{3} + \frac{532354208912584579481}{1251119879987585558537} a^{2} - \frac{184465706371868685536}{1251119879987585558537} a + \frac{615360539013389773965}{1251119879987585558537}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $14$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1104951237.88 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

15T30:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 750
The 32 conjugacy class representatives for [5^3:2]3
Character table for [5^3:2]3 is not computed

Intermediate fields

\(\Q(\zeta_{7})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 15 siblings: data not computed
Degree 30 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/2.3.0.1}{3} }$ ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ R R $15$ ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ ${\href{/LocalNumberField/19.3.0.1}{3} }^{5}$ ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ ${\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{5}$ $15$ ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ R ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ $15$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
5Data not computed
$7$7.3.2.2$x^{3} - 7$$3$$1$$2$$C_3$$[\ ]_{3}$
7.6.4.3$x^{6} + 56 x^{3} + 1323$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$
7.6.4.3$x^{6} + 56 x^{3} + 1323$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$
$41$41.5.4.2$x^{5} + 246$$5$$1$$4$$C_5$$[\ ]_{5}$
41.5.0.1$x^{5} - x + 7$$1$$5$$0$$C_5$$[\ ]^{5}$
41.5.0.1$x^{5} - x + 7$$1$$5$$0$$C_5$$[\ ]^{5}$