Normalized defining polynomial
\( x^{15} - 306 x^{13} - 460 x^{12} + 33210 x^{11} + 86940 x^{10} - 1478380 x^{9} - 4830120 x^{8} + 25190370 x^{7} + 94249160 x^{6} - 101727270 x^{5} - 557130900 x^{4} - 299868400 x^{3} + 289749600 x^{2} + 151773600 x - 45992000 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(29838734014921969199476639703040000000000=2^{22}\cdot 3^{20}\cdot 5^{10}\cdot 43^{6}\cdot 5749^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $499.25$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 43, 5749$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{10} a^{10} + \frac{2}{5} a^{8}$, $\frac{1}{20} a^{11} - \frac{3}{10} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{80} a^{12} - \frac{1}{40} a^{11} - \frac{1}{40} a^{10} - \frac{1}{10} a^{9} - \frac{7}{40} a^{8} - \frac{1}{2} a^{7} - \frac{1}{4} a^{6} - \frac{3}{8} a^{4} + \frac{1}{4} a^{3} + \frac{1}{8} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{160} a^{13} + \frac{1}{80} a^{11} + \frac{1}{40} a^{10} + \frac{1}{80} a^{9} + \frac{19}{40} a^{8} + \frac{3}{8} a^{7} + \frac{1}{4} a^{6} + \frac{5}{16} a^{5} + \frac{1}{4} a^{4} - \frac{3}{16} a^{3} - \frac{1}{8} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{3012947023512793154612476139267261757947537067548800} a^{14} - \frac{240615801996448933472172318317864734011216086567}{301294702351279315461247613926726175794753706754880} a^{13} - \frac{5029796911644036651274777396950030949402350620363}{1506473511756396577306238069633630878973768533774400} a^{12} + \frac{1325485062233851506429437922757948874235928450179}{75323675587819828865311903481681543948688426688720} a^{11} - \frac{279103315130155112715476519863342731050069331403}{60258940470255863092249522785345235158950741350976} a^{10} - \frac{2544026986945680440328969446569794128249860779861}{18830918896954957216327975870420385987172106672180} a^{9} - \frac{7079590729777716100697194201344258754952773262823}{30129470235127931546124761392672617579475370675488} a^{8} - \frac{5255466882842563722833527713061035165233340016617}{18830918896954957216327975870420385987172106672180} a^{7} - \frac{6074320240950027162319547617318229797784675166803}{301294702351279315461247613926726175794753706754880} a^{6} + \frac{73382666884408228716084538084285001042947538738643}{150647351175639657730623806963363087897376853377440} a^{5} - \frac{84405569927853346768266054778302559840297258503427}{301294702351279315461247613926726175794753706754880} a^{4} + \frac{1632858660629174717864884849911758131082210310651}{3766183779390991443265595174084077197434421334436} a^{3} + \frac{583693327836590548087952770836372600888074006619}{1883091889695495721632797587042038598717210667218} a^{2} - \frac{18936753552642337326658163721191964736594758250}{941545944847747860816398793521019299358605333609} a + \frac{1617271204475165874063107963128587503047020864535}{3766183779390991443265595174084077197434421334436}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 50410516790700000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 77760 |
| The 39 conjugacy class representatives for 1/2[S(3)^5]F(5) |
| Character table for 1/2[S(3)^5]F(5) is not computed |
Intermediate fields
| 5.5.3698000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 30 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | $15$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{3}$ | $15$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{3}$ | $15$ | $15$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{3}$ | R | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.10.18.9 | $x^{10} - 2 x^{9} - 6 x^{8} - 6$ | $10$ | $1$ | $18$ | $(C_2^4 : C_5):C_4$ | $[14/5, 14/5, 14/5, 14/5]_{5}^{4}$ | |
| $3$ | 3.3.4.1 | $x^{3} - 3 x^{2} + 21$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ |
| 3.12.16.26 | $x^{12} + 60 x^{11} - 99 x^{10} + 9 x^{9} - 9 x^{8} - 81 x^{7} - 81 x^{6} - 27 x^{5} - 81 x^{4} - 108 x^{3} + 81 x^{2} - 81$ | $3$ | $4$ | $16$ | 12T173 | $[2, 2, 2, 2]^{8}$ | |
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.8.7.1 | $x^{8} - 5$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $43$ | $\Q_{43}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 43.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 43.12.6.2 | $x^{12} - 147008443 x^{2} + 164355439274$ | $2$ | $6$ | $6$ | $C_{12}$ | $[\ ]_{2}^{6}$ | |
| 5749 | Data not computed | ||||||