Normalized defining polynomial
\( x^{15} - 2 x^{14} - 143 x^{13} + 8246 x^{11} + 14904 x^{10} - 219872 x^{9} - 786687 x^{8} + 2075724 x^{7} + 14598886 x^{6} + 12430527 x^{5} - 75224192 x^{4} - 235831716 x^{3} - 288431111 x^{2} - 160431365 x - 31658639 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(29715506336344844930608532407921=11^{12}\cdot 79^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $125.37$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 79$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(869=11\cdot 79\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{869}(576,·)$, $\chi_{869}(1,·)$, $\chi_{869}(102,·)$, $\chi_{869}(554,·)$, $\chi_{869}(845,·)$, $\chi_{869}(687,·)$, $\chi_{869}(80,·)$, $\chi_{869}(529,·)$, $\chi_{869}(339,·)$, $\chi_{869}(213,·)$, $\chi_{869}(23,·)$, $\chi_{869}(608,·)$, $\chi_{869}(159,·)$, $\chi_{869}(317,·)$, $\chi_{869}(181,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{223067537909890884217300218957468426947} a^{14} + \frac{56886692286278735510646654840065791561}{223067537909890884217300218957468426947} a^{13} + \frac{101318305369077898643052249354844834796}{223067537909890884217300218957468426947} a^{12} + \frac{21678463956372739290103200590042158906}{223067537909890884217300218957468426947} a^{11} - \frac{71526624288994460266849611564575326260}{223067537909890884217300218957468426947} a^{10} - \frac{30913609047569453833449913177190218609}{223067537909890884217300218957468426947} a^{9} - \frac{109094159413731616192685638615680394529}{223067537909890884217300218957468426947} a^{8} + \frac{15713207295443673690540121940292371915}{223067537909890884217300218957468426947} a^{7} - \frac{51120570810107325675971981339845789970}{223067537909890884217300218957468426947} a^{6} + \frac{48925773291469038285858169985298924512}{223067537909890884217300218957468426947} a^{5} + \frac{66439627061255413177608191999094326213}{223067537909890884217300218957468426947} a^{4} - \frac{80625202064355176122685683602469540122}{223067537909890884217300218957468426947} a^{3} + \frac{82864884068779128876572465759464789076}{223067537909890884217300218957468426947} a^{2} - \frac{21594301065229192854312470787730726967}{223067537909890884217300218957468426947} a + \frac{406648275031361465029135647150858}{923029175897160513832143216372263}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 61238384087.82688 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 15 |
| The 15 conjugacy class representatives for $C_{15}$ |
| Character table for $C_{15}$ |
Intermediate fields
| 3.3.6241.1, \(\Q(\zeta_{11})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $15$ | $15$ | $15$ | $15$ | R | $15$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{3}$ | $15$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{5}$ | $15$ | $15$ | $15$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{5}$ | $15$ | $15$ | $15$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.15.12.1 | $x^{15} + 165 x^{10} + 5324 x^{5} + 323433$ | $5$ | $3$ | $12$ | $C_{15}$ | $[\ ]_{5}^{3}$ |
| $79$ | 79.15.10.1 | $x^{15} + 23665872 x^{6} - 38950081 x^{3} + 12603623010304$ | $3$ | $5$ | $10$ | $C_{15}$ | $[\ ]_{3}^{5}$ |