Normalized defining polynomial
\( x^{15} - 1980 x^{13} - 2232 x^{12} + 1066084 x^{11} - 1229584 x^{10} - 182612916 x^{9} + 706537368 x^{8} + 2232940764 x^{7} - 7767061528 x^{6} + 2017438560 x^{5} + 8709408000 x^{4} - 4929283000 x^{3} - 2262026800 x^{2} + 1693496000 x - 241928000 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2951913264025688280807555730603157129805843381784576000000=2^{18}\cdot 5^{6}\cdot 7^{10}\cdot 1609^{2}\cdot 30241^{4}\cdot 34326797^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $6781.73$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7, 1609, 30241, 34326797$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{2} a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{4} a^{8}$, $\frac{1}{4} a^{9}$, $\frac{1}{4} a^{10}$, $\frac{1}{20} a^{11} - \frac{1}{10} a^{8} + \frac{1}{5} a^{7} - \frac{1}{5} a^{6} + \frac{1}{5} a^{5} - \frac{1}{10} a^{4} + \frac{1}{5} a^{3} - \frac{2}{5} a^{2}$, $\frac{1}{40} a^{12} - \frac{1}{20} a^{9} + \frac{1}{10} a^{8} - \frac{1}{10} a^{7} + \frac{1}{10} a^{6} + \frac{1}{5} a^{5} + \frac{1}{10} a^{4} - \frac{1}{5} a^{3}$, $\frac{1}{115600} a^{13} - \frac{31}{5780} a^{12} - \frac{67}{2890} a^{11} + \frac{567}{28900} a^{10} - \frac{519}{28900} a^{9} + \frac{546}{7225} a^{8} - \frac{6959}{28900} a^{7} - \frac{2289}{14450} a^{6} - \frac{6049}{28900} a^{5} + \frac{1412}{7225} a^{4} + \frac{314}{1445} a^{3} + \frac{31}{289} a^{2} + \frac{5}{578} a - \frac{108}{289}$, $\frac{1}{151549956421892949959339452028020409295190100144659594498400} a^{14} + \frac{246944647521776101521777893227468162906493295400839351}{75774978210946474979669726014010204647595050072329797249200} a^{13} + \frac{35558688605109005438086316297732887667279963962095993437}{7577497821094647497966972601401020464759505007232979724920} a^{12} + \frac{473139770061873848454052546708608503824759806042398122491}{18943744552736618744917431503502551161898762518082449312300} a^{11} + \frac{294812662467380235040368385456567234139319318934272441431}{7577497821094647497966972601401020464759505007232979724920} a^{10} + \frac{236136267657845023970628325723496022674396459076003165943}{18943744552736618744917431503502551161898762518082449312300} a^{9} + \frac{1918775788472293960027882660856822773916369141179984644739}{37887489105473237489834863007005102323797525036164898624600} a^{8} + \frac{2230155756336465629405607930084467544806707513635527693271}{9471872276368309372458715751751275580949381259041224656150} a^{7} - \frac{4376629847765569352152292676575761259068696486369284813}{89147033189348794093729089428247299585405941261564467352} a^{6} + \frac{23784520880760249071428253784348755843366175017147651193}{1894374455273661874491743150350255116189876251808244931230} a^{5} + \frac{608839249418798476635953206527520658565151829592405485859}{9471872276368309372458715751751275580949381259041224656150} a^{4} + \frac{3569328578244116428892179233277234983339918539293609736}{7959556534763285186940097270379223177268387612639684585} a^{3} - \frac{512235269819877823056302729078142892330539457338581181339}{3788748910547323748983486300700510232379752503616489862460} a^{2} - \frac{8830353741683451283428935474332312098861415046114376999}{189437445527366187449174315035025511618987625180824493123} a - \frac{41342533683478215467722850326155727527480576901805975877}{189437445527366187449174315035025511618987625180824493123}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 362134556768000000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 648000 |
| The 55 conjugacy class representatives for [A(5)^3]3=A(5)wr3 are not computed |
| Character table for [A(5)^3]3=A(5)wr3 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
| Degree 30 sibling: | data not computed |
| Degree 36 sibling: | data not computed |
| Degree 45 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.9.0.1}{9} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | R | R | $15$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/17.9.0.1}{9} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | $15$ | ${\href{/LocalNumberField/29.5.0.1}{5} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | $15$ | $15$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | $15$ | $15$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.12.18.44 | $x^{12} - 6 x^{11} + 8 x^{10} + 6 x^{8} + 4 x^{6} + 8 x^{5} + 8 x^{4} + 8 x^{3} + 8$ | $4$ | $3$ | $18$ | 12T166 | $[2, 2, 2, 2, 2, 2]^{9}$ | |
| $5$ | 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $7$ | 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| 1609 | Data not computed | ||||||
| 30241 | Data not computed | ||||||
| 34326797 | Data not computed | ||||||