Normalized defining polynomial
\( x^{15} - x^{14} - 155 x^{13} + 121 x^{12} + 9150 x^{11} - 5424 x^{10} - 259640 x^{9} + 113792 x^{8} + 3704800 x^{7} - 1186880 x^{6} - 25716480 x^{5} + 5849088 x^{4} + 70144000 x^{3} - 10485760 x^{2} - 8192000 x + 262144 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(29469615804756686585980269796501500928=2^{10}\cdot 37^{5}\cdot 20371966273189^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $314.74$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 37, 20371966273189$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{12} a^{5} - \frac{1}{12} a^{4} - \frac{1}{4} a^{3} + \frac{5}{12} a^{2} + \frac{1}{6} a - \frac{1}{3}$, $\frac{1}{24} a^{6} - \frac{1}{24} a^{5} - \frac{1}{8} a^{4} + \frac{5}{24} a^{3} - \frac{5}{12} a^{2} - \frac{1}{6} a$, $\frac{1}{144} a^{7} - \frac{1}{144} a^{6} + \frac{5}{144} a^{5} + \frac{11}{48} a^{4} - \frac{5}{72} a^{3} + \frac{1}{6} a^{2} - \frac{2}{9} a + \frac{1}{9}$, $\frac{1}{576} a^{8} + \frac{1}{576} a^{7} + \frac{1}{192} a^{6} - \frac{5}{576} a^{5} + \frac{13}{72} a^{4} - \frac{35}{144} a^{3} - \frac{5}{36} a^{2} + \frac{1}{4} a - \frac{1}{9}$, $\frac{1}{3456} a^{9} - \frac{1}{3456} a^{8} + \frac{1}{3456} a^{7} + \frac{37}{3456} a^{6} - \frac{5}{576} a^{5} + \frac{7}{32} a^{4} + \frac{91}{432} a^{3} - \frac{77}{216} a^{2} + \frac{49}{108} a - \frac{5}{27}$, $\frac{1}{6912} a^{10} - \frac{1}{6912} a^{9} + \frac{1}{6912} a^{8} - \frac{11}{6912} a^{7} + \frac{1}{384} a^{6} - \frac{5}{576} a^{5} - \frac{35}{864} a^{4} + \frac{61}{432} a^{3} - \frac{77}{216} a^{2} + \frac{25}{54} a + \frac{2}{9}$, $\frac{1}{248832} a^{11} - \frac{1}{248832} a^{10} - \frac{1}{82944} a^{9} - \frac{31}{248832} a^{8} - \frac{53}{124416} a^{7} + \frac{481}{31104} a^{6} - \frac{713}{31104} a^{5} - \frac{583}{7776} a^{4} - \frac{197}{2592} a^{3} + \frac{481}{3888} a^{2} - \frac{104}{243} a + \frac{61}{243}$, $\frac{1}{995328} a^{12} - \frac{1}{995328} a^{11} + \frac{23}{331776} a^{10} - \frac{103}{995328} a^{9} - \frac{17}{497664} a^{8} - \frac{25}{62208} a^{7} + \frac{2473}{124416} a^{6} + \frac{343}{15552} a^{5} + \frac{2077}{10368} a^{4} - \frac{149}{15552} a^{3} - \frac{623}{3888} a^{2} + \frac{475}{972} a + \frac{2}{9}$, $\frac{1}{71663616} a^{13} + \frac{35}{71663616} a^{12} + \frac{65}{71663616} a^{11} - \frac{35}{884736} a^{10} - \frac{2495}{35831808} a^{9} - \frac{205}{2985984} a^{8} - \frac{253}{2985984} a^{7} + \frac{20545}{2239488} a^{6} + \frac{45743}{2239488} a^{5} - \frac{5297}{41472} a^{4} - \frac{1913}{17496} a^{3} - \frac{6967}{23328} a^{2} + \frac{598}{2187} a - \frac{2101}{4374}$, $\frac{1}{286654464} a^{14} - \frac{1}{286654464} a^{13} - \frac{43}{286654464} a^{12} - \frac{7}{3538944} a^{11} - \frac{7913}{143327232} a^{10} - \frac{61}{746496} a^{9} + \frac{647}{11943936} a^{8} - \frac{373}{279936} a^{7} - \frac{179365}{8957952} a^{6} + \frac{2885}{165888} a^{5} + \frac{130267}{1119744} a^{4} + \frac{21521}{93312} a^{3} - \frac{21055}{69984} a^{2} - \frac{7087}{17496} a + \frac{119}{486}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 234947681045000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 6000 |
| The 40 conjugacy class representatives for [D(5)^3]S(3)=D(5)wrS(3) |
| Character table for [D(5)^3]S(3)=D(5)wrS(3) is not computed |
Intermediate fields
| 3.3.148.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.5.0.1}{5} }$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.5.0.1}{5} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.5.0.1}{5} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $37$ | $\Q_{37}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 37.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 37.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 37.10.5.1 | $x^{10} - 2738 x^{6} + 1874161 x^{2} - 11719128733$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 20371966273189 | Data not computed | ||||||