Normalized defining polynomial
\( x^{15} - 680 x^{13} + 171320 x^{11} - 119968 x^{10} - 20002000 x^{9} + 43344480 x^{8} + 1125484800 x^{7} - 4314358400 x^{6} - 24576836416 x^{5} + 139423692800 x^{4} + 63114118080 x^{3} - 1090492454400 x^{2} + 290797987840 x + 2806200582656 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2893656810637015092296465010514625000000000000=2^{12}\cdot 5^{15}\cdot 19^{5}\cdot 73^{8}\cdot 103^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1073.40$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 19, 73, 103$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{4} a^{5}$, $\frac{1}{8} a^{6}$, $\frac{1}{16} a^{7} - \frac{1}{2} a$, $\frac{1}{2336} a^{8} - \frac{3}{73} a^{6} - \frac{1}{8} a^{5} + \frac{13}{146} a^{4} + \frac{21}{146} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{2336} a^{9} + \frac{25}{1168} a^{7} + \frac{13}{146} a^{5} - \frac{31}{292} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{341056} a^{10} + \frac{25}{170528} a^{8} + \frac{1997}{42632} a^{6} + \frac{991}{42632} a^{5} - \frac{45}{584} a^{4} - \frac{14}{73} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{341056} a^{11} + \frac{25}{170528} a^{9} - \frac{1335}{85264} a^{7} + \frac{991}{42632} a^{6} - \frac{45}{584} a^{5} + \frac{17}{292} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{682112} a^{12} + \frac{11}{170528} a^{8} + \frac{991}{85264} a^{7} + \frac{4759}{85264} a^{6} + \frac{3111}{42632} a^{5} - \frac{13}{292} a^{4} - \frac{21}{292} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{99588352} a^{13} + \frac{25}{49794176} a^{11} - \frac{1335}{24897088} a^{9} + \frac{991}{12448544} a^{8} + \frac{4773}{170528} a^{7} - \frac{421}{85264} a^{6} + \frac{45}{1168} a^{5} + \frac{71}{584} a^{4} + \frac{13}{584} a^{3} - \frac{1}{2} a$, $\frac{1}{4982468289271383617797586176} a^{14} - \frac{3334547439517812943}{2491234144635691808898793088} a^{13} - \frac{14040303209792549681}{2491234144635691808898793088} a^{12} + \frac{276452433012552242337}{622808536158922952224698272} a^{11} - \frac{1793257350921940428143}{1245617072317845904449396544} a^{10} - \frac{114784489809028651202603}{622808536158922952224698272} a^{9} - \frac{90278165955019153770239}{622808536158922952224698272} a^{8} + \frac{52278119811269445711741}{2132905945749736137755816} a^{7} - \frac{229852816270096983755737}{4265811891499472275511632} a^{6} + \frac{241982670229045703743381}{2132905945749736137755816} a^{5} - \frac{1441255193280637174307}{29217889667804604626792} a^{4} - \frac{51335127470635166051}{7304472416951151156698} a^{3} - \frac{23959649692338815811}{100061265985632207626} a^{2} + \frac{8201450185620543302}{50030632992816103813} a - \frac{14834946159419081449}{50030632992816103813}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2647558800940000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 12000 |
| The 38 conjugacy class representatives for [D(5)^3:2]S(3) |
| Character table for [D(5)^3:2]S(3) is not computed |
Intermediate fields
| 3.3.1957.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | ${\href{/LocalNumberField/11.5.0.1}{5} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{3}$ | R | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | ${\href{/LocalNumberField/29.5.0.1}{5} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ | |
| $5$ | 5.5.5.1 | $x^{5} + 20 x + 5$ | $5$ | $1$ | $5$ | $F_5$ | $[5/4]_{4}$ |
| 5.10.10.8 | $x^{10} + 10 x^{8} + 20 x^{6} + 10 x^{5} - 20 x^{4} - 20 x^{2} + 22$ | $5$ | $2$ | $10$ | $F_{5}\times C_2$ | $[5/4]_{4}^{2}$ | |
| $19$ | 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.5.0.1 | $x^{5} - x + 5$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| $73$ | $\Q_{73}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 73.4.0.1 | $x^{4} - x + 13$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 73.10.8.1 | $x^{10} - 73 x^{5} + 58619$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 103 | Data not computed | ||||||