Normalized defining polynomial
\( x^{15} - 95 x^{13} + 3365 x^{11} - 192 x^{10} - 57850 x^{9} + 4810 x^{8} + 511225 x^{7} - 11830 x^{6} - 2226068 x^{5} - 329550 x^{4} + 4009525 x^{3} + 1428050 x^{2} - 1142440 x - 228488 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(28802967316428066125000000000000=2^{12}\cdot 5^{15}\cdot 7^{10}\cdot 13^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $125.11$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{13} a^{8} - \frac{4}{13} a^{6} - \frac{2}{13} a^{4} + \frac{3}{13} a^{3}$, $\frac{1}{91} a^{9} + \frac{1}{91} a^{8} - \frac{17}{91} a^{7} + \frac{9}{91} a^{6} - \frac{2}{91} a^{5} - \frac{25}{91} a^{4} + \frac{6}{13} a^{3} - \frac{3}{7} a - \frac{1}{7}$, $\frac{1}{1183} a^{10} - \frac{4}{1183} a^{8} - \frac{2}{7} a^{7} + \frac{297}{1183} a^{6} - \frac{23}{1183} a^{5} - \frac{18}{91} a^{4} + \frac{2}{13} a^{3} + \frac{3}{7} a^{2} - \frac{2}{7} a - \frac{1}{7}$, $\frac{1}{1183} a^{11} - \frac{4}{1183} a^{9} + \frac{2}{91} a^{8} + \frac{297}{1183} a^{7} - \frac{296}{1183} a^{6} - \frac{18}{91} a^{5} - \frac{6}{13} a^{4} + \frac{32}{91} a^{3} - \frac{2}{7} a^{2} - \frac{1}{7} a$, $\frac{1}{1183} a^{12} - \frac{18}{1183} a^{8} - \frac{23}{1183} a^{7} - \frac{554}{1183} a^{6} - \frac{586}{1183} a^{5} - \frac{3}{7} a^{4} - \frac{2}{7} a^{3} - \frac{3}{7} a^{2} - \frac{2}{7} a - \frac{2}{7}$, $\frac{1}{30758} a^{13} + \frac{9}{30758} a^{11} - \frac{93}{30758} a^{9} - \frac{96}{15379} a^{8} + \frac{107}{1183} a^{7} - \frac{583}{1183} a^{6} + \frac{83}{182} a^{5} + \frac{1}{13} a^{4} + \frac{5}{91} a^{3} + \frac{3}{7} a^{2} - \frac{5}{14} a + \frac{2}{7}$, $\frac{1}{450658022288473636} a^{14} + \frac{31679803485}{32189858734890974} a^{13} - \frac{9210987566447}{450658022288473636} a^{12} + \frac{91474816965613}{225329011144236818} a^{11} + \frac{6994570106197}{450658022288473636} a^{10} - \frac{286202104739821}{225329011144236818} a^{9} + \frac{459731747542069}{32189858734890974} a^{8} + \frac{2713993871059165}{17333000857248986} a^{7} - \frac{878014145184627}{2666615516499844} a^{6} - \frac{3652939564343217}{8666500428624493} a^{5} + \frac{26444790129736}{95236268446423} a^{4} - \frac{199051052153185}{1333307758249922} a^{3} + \frac{51945105656893}{205124270499988} a^{2} - \frac{519188046277}{51281067624997} a + \frac{24130435901552}{51281067624997}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 94158911826.5 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_5^2:C_{12}$ (as 15T19):
| A solvable group of order 300 |
| The 14 conjugacy class representatives for $(C_5^2 : C_4):C_3$ |
| Character table for $(C_5^2 : C_4):C_3$ |
Intermediate fields
| \(\Q(\zeta_{7})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 15 sibling: | data not computed |
| Degree 25 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | R | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.12.12.25 | $x^{12} - 78 x^{10} - 1621 x^{8} + 460 x^{6} - 1977 x^{4} + 866 x^{2} + 749$ | $2$ | $6$ | $12$ | $C_{12}$ | $[2]^{6}$ | |
| 5 | Data not computed | ||||||
| $7$ | 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.12.8.1 | $x^{12} - 63 x^{9} + 637 x^{6} + 6174 x^{3} + 300125$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ | |
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.5.4.1 | $x^{5} - 13$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 13.5.4.1 | $x^{5} - 13$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |