Normalized defining polynomial
\( x^{15} - 5 x^{14} - 80 x^{13} + 290 x^{12} + 2545 x^{11} - 5909 x^{10} - 39850 x^{9} + 51015 x^{8} + 314635 x^{7} - 181935 x^{6} - 1227567 x^{5} + 144735 x^{4} + 2166295 x^{3} + 419510 x^{2} - 1278880 x - 477401 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(286613963390460550785064697265625=5^{24}\cdot 37^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $145.82$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(925=5^{2}\cdot 37\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{925}(1,·)$, $\chi_{925}(676,·)$, $\chi_{925}(581,·)$, $\chi_{925}(396,·)$, $\chi_{925}(491,·)$, $\chi_{925}(556,·)$, $\chi_{925}(306,·)$, $\chi_{925}(211,·)$, $\chi_{925}(186,·)$, $\chi_{925}(371,·)$, $\chi_{925}(121,·)$, $\chi_{925}(26,·)$, $\chi_{925}(861,·)$, $\chi_{925}(766,·)$, $\chi_{925}(741,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{7} a^{12} + \frac{1}{7} a^{11} + \frac{1}{7} a^{10} + \frac{1}{7} a^{9} + \frac{2}{7} a^{8} + \frac{3}{7} a^{7} + \frac{2}{7} a^{6} - \frac{2}{7} a^{4} - \frac{1}{7} a^{3} + \frac{3}{7} a + \frac{1}{7}$, $\frac{1}{7} a^{13} + \frac{1}{7} a^{9} + \frac{1}{7} a^{8} - \frac{1}{7} a^{7} - \frac{2}{7} a^{6} - \frac{2}{7} a^{5} + \frac{1}{7} a^{4} + \frac{1}{7} a^{3} + \frac{3}{7} a^{2} - \frac{2}{7} a - \frac{1}{7}$, $\frac{1}{15888071788681034422578466732462343} a^{14} + \frac{598014346113918083649368578180198}{15888071788681034422578466732462343} a^{13} + \frac{14122964037034759825947973103059}{369490041597233358664615505406101} a^{12} + \frac{7365516746922966260576008348955771}{15888071788681034422578466732462343} a^{11} - \frac{168895620913969203535392558060293}{15888071788681034422578466732462343} a^{10} + \frac{2340472191817985142232291597551925}{15888071788681034422578466732462343} a^{9} - \frac{1050342631625540666082074903941747}{15888071788681034422578466732462343} a^{8} - \frac{5903646795461607302331868764584799}{15888071788681034422578466732462343} a^{7} + \frac{3045141898258300489958937858899337}{15888071788681034422578466732462343} a^{6} - \frac{5669346460400241760409123122038873}{15888071788681034422578466732462343} a^{5} + \frac{869397659963546591479195615732349}{2269724541240147774654066676066049} a^{4} + \frac{81057743685468119224467463263894}{2269724541240147774654066676066049} a^{3} + \frac{680547287655413441117642082740638}{15888071788681034422578466732462343} a^{2} + \frac{4727932753570869230962888830649717}{15888071788681034422578466732462343} a + \frac{6189440195312424852556193420728498}{15888071788681034422578466732462343}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 234241175446.62338 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 15 |
| The 15 conjugacy class representatives for $C_{15}$ |
| Character table for $C_{15}$ |
Intermediate fields
| 3.3.1369.1, 5.5.390625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $15$ | $15$ | R | ${\href{/LocalNumberField/7.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{3}$ | $15$ | $15$ | $15$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{3}$ | R | $15$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{15}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{3}$ | $15$ | $15$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.15.24.88 | $x^{15} + 375 x^{14} + 415 x^{13} + 575 x^{12} + 520 x^{11} + 378 x^{10} + 145 x^{9} + 275 x^{8} + 85 x^{7} + 545 x^{6} + 127 x^{5} + 380 x^{4} + 470 x^{3} + 615 x + 368$ | $5$ | $3$ | $24$ | $C_{15}$ | $[2]^{3}$ |
| $37$ | 37.15.10.1 | $x^{15} + 1975467 x^{6} - 1874161 x^{3} + 152348673529$ | $3$ | $5$ | $10$ | $C_{15}$ | $[\ ]_{3}^{5}$ |