Properties

Label 15.15.2842409513...9376.1
Degree $15$
Signature $[15, 0]$
Discriminant $2^{6}\cdot 7^{10}\cdot 11^{6}\cdot 31^{6}$
Root discriminant $49.76$
Ramified primes $2, 7, 11, 31$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $\GL(2,4)$ (as 15T16)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-41, 736, -4896, 16191, -28390, 23221, 721, -16303, 10144, 153, -2057, 437, 125, -41, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^15 - 2*x^14 - 41*x^13 + 125*x^12 + 437*x^11 - 2057*x^10 + 153*x^9 + 10144*x^8 - 16303*x^7 + 721*x^6 + 23221*x^5 - 28390*x^4 + 16191*x^3 - 4896*x^2 + 736*x - 41)
 
gp: K = bnfinit(x^15 - 2*x^14 - 41*x^13 + 125*x^12 + 437*x^11 - 2057*x^10 + 153*x^9 + 10144*x^8 - 16303*x^7 + 721*x^6 + 23221*x^5 - 28390*x^4 + 16191*x^3 - 4896*x^2 + 736*x - 41, 1)
 

Normalized defining polynomial

\( x^{15} - 2 x^{14} - 41 x^{13} + 125 x^{12} + 437 x^{11} - 2057 x^{10} + 153 x^{9} + 10144 x^{8} - 16303 x^{7} + 721 x^{6} + 23221 x^{5} - 28390 x^{4} + 16191 x^{3} - 4896 x^{2} + 736 x - 41 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $15$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[15, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(28424095136369691319629376=2^{6}\cdot 7^{10}\cdot 11^{6}\cdot 31^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $49.76$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 7, 11, 31$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{132441017874101} a^{14} - \frac{39194675530110}{132441017874101} a^{13} + \frac{10426717420919}{132441017874101} a^{12} - \frac{23863081481156}{132441017874101} a^{11} - \frac{29458270830169}{132441017874101} a^{10} + \frac{28869756498471}{132441017874101} a^{9} - \frac{47432036721214}{132441017874101} a^{8} - \frac{38049751215541}{132441017874101} a^{7} + \frac{53419629597697}{132441017874101} a^{6} - \frac{45520827028165}{132441017874101} a^{5} + \frac{8500748405465}{132441017874101} a^{4} + \frac{42370190172775}{132441017874101} a^{3} + \frac{58353564638802}{132441017874101} a^{2} + \frac{53152691149944}{132441017874101} a - \frac{51884770063908}{132441017874101}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $14$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 94463462.964 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_3\times A_5$ (as 15T16):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 180
The 15 conjugacy class representatives for $\GL(2,4)$
Character table for $\GL(2,4)$

Intermediate fields

\(\Q(\zeta_{7})^+\), 5.5.22791076.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 15 siblings: data not computed
Degree 18 sibling: data not computed
Degree 30 sibling: data not computed
Degree 36 sibling: data not computed
Degree 45 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R $15$ $15$ R R ${\href{/LocalNumberField/13.5.0.1}{5} }^{3}$ $15$ $15$ $15$ ${\href{/LocalNumberField/29.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{6}$ R ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ ${\href{/LocalNumberField/41.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{6}$ ${\href{/LocalNumberField/43.5.0.1}{5} }^{3}$ ${\href{/LocalNumberField/47.3.0.1}{3} }^{5}$ ${\href{/LocalNumberField/53.3.0.1}{3} }^{5}$ ${\href{/LocalNumberField/59.3.0.1}{3} }^{5}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.6.0.1$x^{6} - x + 1$$1$$6$$0$$C_6$$[\ ]^{6}$
2.9.6.1$x^{9} - 4 x^{3} + 8$$3$$3$$6$$S_3\times C_3$$[\ ]_{3}^{6}$
$7$7.3.2.2$x^{3} - 7$$3$$1$$2$$C_3$$[\ ]_{3}$
7.3.2.2$x^{3} - 7$$3$$1$$2$$C_3$$[\ ]_{3}$
7.9.6.1$x^{9} + 42 x^{6} + 539 x^{3} + 2744$$3$$3$$6$$C_3^2$$[\ ]_{3}^{3}$
$11$11.6.0.1$x^{6} + x^{2} - 2 x + 8$$1$$6$$0$$C_6$$[\ ]^{6}$
11.9.6.1$x^{9} - 121 x^{3} + 3993$$3$$3$$6$$S_3\times C_3$$[\ ]_{3}^{6}$
$31$31.3.0.1$x^{3} - x + 9$$1$$3$$0$$C_3$$[\ ]^{3}$
31.3.0.1$x^{3} - x + 9$$1$$3$$0$$C_3$$[\ ]^{3}$
31.9.6.1$x^{9} + 837 x^{6} + 232562 x^{3} + 21717639$$3$$3$$6$$C_3^2$$[\ ]_{3}^{3}$