Normalized defining polynomial
\( x^{15} - 3 x^{14} - 48 x^{13} + 168 x^{12} + 663 x^{11} - 2841 x^{10} - 2236 x^{9} + 16959 x^{8} - 3687 x^{7} - 40813 x^{6} + 26625 x^{5} + 35805 x^{4} - 31481 x^{3} - 7836 x^{2} + 10398 x - 1637 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2746410307762150989067078161=3^{20}\cdot 31^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $67.49$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(279=3^{2}\cdot 31\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{279}(256,·)$, $\chi_{279}(1,·)$, $\chi_{279}(163,·)$, $\chi_{279}(4,·)$, $\chi_{279}(70,·)$, $\chi_{279}(97,·)$, $\chi_{279}(64,·)$, $\chi_{279}(202,·)$, $\chi_{279}(109,·)$, $\chi_{279}(16,·)$, $\chi_{279}(94,·)$, $\chi_{279}(250,·)$, $\chi_{279}(187,·)$, $\chi_{279}(157,·)$, $\chi_{279}(190,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} + \frac{1}{5} a^{11} + \frac{2}{5} a^{10} + \frac{1}{5} a^{9} - \frac{2}{5} a^{8} + \frac{1}{5} a^{6} - \frac{1}{5} a^{4} + \frac{2}{5} a^{3} + \frac{2}{5} a^{2} + \frac{1}{5} a - \frac{2}{5}$, $\frac{1}{5} a^{13} + \frac{1}{5} a^{11} - \frac{1}{5} a^{10} + \frac{2}{5} a^{9} + \frac{2}{5} a^{8} + \frac{1}{5} a^{7} - \frac{1}{5} a^{6} - \frac{1}{5} a^{5} - \frac{2}{5} a^{4} - \frac{1}{5} a^{2} + \frac{2}{5} a + \frac{2}{5}$, $\frac{1}{482014848411505891714945} a^{14} + \frac{17557725826304093750486}{482014848411505891714945} a^{13} - \frac{2843982781205037944466}{96402969682301178342989} a^{12} - \frac{889571167651853138456}{482014848411505891714945} a^{11} + \frac{12002463554808680551434}{482014848411505891714945} a^{10} + \frac{184970375126972145664378}{482014848411505891714945} a^{9} + \frac{22901978135349587214133}{96402969682301178342989} a^{8} - \frac{22302228434216729309974}{96402969682301178342989} a^{7} - \frac{69128921954478077616473}{482014848411505891714945} a^{6} - \frac{118440890239581215763618}{482014848411505891714945} a^{5} + \frac{163396838012447747006359}{482014848411505891714945} a^{4} - \frac{154404421460349485177218}{482014848411505891714945} a^{3} - \frac{172679322483682833955256}{482014848411505891714945} a^{2} + \frac{195900644609208717051148}{482014848411505891714945} a - \frac{96932339707114428352801}{482014848411505891714945}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 552470977.222 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 15 |
| The 15 conjugacy class representatives for $C_{15}$ |
| Character table for $C_{15}$ |
Intermediate fields
| \(\Q(\zeta_{9})^+\), 5.5.923521.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $15$ | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{5}$ | $15$ | $15$ | $15$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{3}$ | $15$ | $15$ | R | ${\href{/LocalNumberField/37.1.0.1}{1} }^{15}$ | $15$ | $15$ | $15$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{3}$ | $15$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 31 | Data not computed | ||||||