Normalized defining polynomial
\( x^{15} - 7599 x^{13} - 91336 x^{12} + 20821806 x^{11} + 494149740 x^{10} - 21753227652 x^{9} - 850155338070 x^{8} + 2179565290971 x^{7} + 471963727156998 x^{6} + 6060790547069841 x^{5} - 42397281676187196 x^{4} - 1756261687063060122 x^{3} - 17963813846668521546 x^{2} - 82917165854238062490 x - 148757485284891230462 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2682533404519714891839773452435223413236182431174656=2^{12}\cdot 3^{20}\cdot 11^{10}\cdot 13^{2}\cdot 157^{6}\cdot 887^{2}\cdot 1907^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $2682.68$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11, 13, 157, 887, 1907$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5}$, $\frac{1}{22} a^{12} + \frac{1}{11} a^{10} - \frac{3}{22} a^{9} + \frac{5}{22} a^{8} - \frac{2}{11} a^{7} - \frac{1}{11} a^{6} - \frac{5}{22} a^{5} + \frac{1}{11} a^{4} + \frac{5}{11} a^{3}$, $\frac{1}{22} a^{13} + \frac{1}{11} a^{11} - \frac{3}{22} a^{10} + \frac{5}{22} a^{9} - \frac{2}{11} a^{8} - \frac{1}{11} a^{7} - \frac{5}{22} a^{6} + \frac{1}{11} a^{5} + \frac{5}{11} a^{4}$, $\frac{1}{413343611468805491099251520461931184550453525589206788569891891687446678023180772455793328391219545493541117955548678} a^{14} + \frac{624126028604502425906131217947021478699361806572728808522685069898324319281161823345641294151896522846118992917895}{37576691951709590099931956405630107686404865962655162597262899244313334365743706586890302581019958681231010723231698} a^{13} - \frac{7376232012598583664989469971362708256482215986983162570682582706929790654092724357946207793777837806406097145677619}{413343611468805491099251520461931184550453525589206788569891891687446678023180772455793328391219545493541117955548678} a^{12} + \frac{27901704925556578639188140282850565717693702399726013949792961036928303522092629554953284077045164664628396065830016}{206671805734402745549625760230965592275226762794603394284945945843723339011590386227896664195609772746770558977774339} a^{11} - \frac{102331233867505739146687056714166859566294854005399537637941604949738788873512511126527283837187524253934299369327155}{413343611468805491099251520461931184550453525589206788569891891687446678023180772455793328391219545493541117955548678} a^{10} - \frac{7945941450821492605271099190777941384032025468220223637561329704054387601717481302842524299446189966158103860002662}{18788345975854795049965978202815053843202432981327581298631449622156667182871853293445151290509979340615505361615849} a^{9} - \frac{172823915918568233632780379762242910519755003090385192982146254666726130897387843617835619578214058250767717499070911}{413343611468805491099251520461931184550453525589206788569891891687446678023180772455793328391219545493541117955548678} a^{8} - \frac{86648224303297168335879414403109947673738971812975767724553104902545080997072499673693884730176431391910244142508463}{206671805734402745549625760230965592275226762794603394284945945843723339011590386227896664195609772746770558977774339} a^{7} + \frac{68488725366200724590238009804358306796807310242361930171459222633530459302399703082976008853054425746387154782091097}{206671805734402745549625760230965592275226762794603394284945945843723339011590386227896664195609772746770558977774339} a^{6} + \frac{9274676822055762941405300961974036335713021242647160575155794732696767872909935332627245910146681089218008969827751}{413343611468805491099251520461931184550453525589206788569891891687446678023180772455793328391219545493541117955548678} a^{5} + \frac{23925086510906142578865813784534741900515396886605126392786173563467475066237413769220509560026205518042405580990729}{206671805734402745549625760230965592275226762794603394284945945843723339011590386227896664195609772746770558977774339} a^{4} - \frac{61426583641362109176607638382401908941104068890256535309471297709474463371027715276087275128740391056296156156470812}{206671805734402745549625760230965592275226762794603394284945945843723339011590386227896664195609772746770558977774339} a^{3} - \frac{8905192719614326461477107184951221409375838394477567269201060068644121592184922431486818391681553476969856829921881}{18788345975854795049965978202815053843202432981327581298631449622156667182871853293445151290509979340615505361615849} a^{2} - \frac{3512876844984275312846027939244022443407258244666609102727546525707862978808642019875819010111500631191250439155575}{18788345975854795049965978202815053843202432981327581298631449622156667182871853293445151290509979340615505361615849} a + \frac{259229187008908848472793853693858856511051339383712279761284548686139012388348727203310852376300181648358980505133}{18788345975854795049965978202815053843202432981327581298631449622156667182871853293445151290509979340615505361615849}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1702104381240000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 29160 |
| The 48 conjugacy class representatives for 1/2[3^5:2]S(5) |
| Character table for 1/2[3^5:2]S(5) is not computed |
Intermediate fields
| 5.5.303952.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 15 siblings: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 45 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | R | R | ${\href{/LocalNumberField/17.9.0.1}{9} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | $15$ | ${\href{/LocalNumberField/37.9.0.1}{9} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 3 | Data not computed | ||||||
| $11$ | 11.6.4.2 | $x^{6} - 11 x^{3} + 847$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
| 11.9.6.1 | $x^{9} - 121 x^{3} + 3993$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| $13$ | 13.3.2.1 | $x^{3} + 26$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 13.6.0.1 | $x^{6} + x^{2} - 2 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 13.6.0.1 | $x^{6} + x^{2} - 2 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $157$ | 157.3.0.1 | $x^{3} - x + 15$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 157.6.3.1 | $x^{6} - 314 x^{4} + 24649 x^{2} - 870725925$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 157.6.3.1 | $x^{6} - 314 x^{4} + 24649 x^{2} - 870725925$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 887 | Data not computed | ||||||
| 1907 | Data not computed | ||||||