Normalized defining polynomial
\( x^{15} - 93 x^{13} - 62 x^{12} + 3069 x^{11} + 3534 x^{10} - 43617 x^{9} - 59985 x^{8} + 290067 x^{7} + 447981 x^{6} - 837000 x^{5} - 1558308 x^{4} + 541198 x^{3} + 2046465 x^{2} + 1023000 x + 96875 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2639300305759427100493462112721=3^{20}\cdot 31^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $106.68$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(279=3^{2}\cdot 31\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{279}(64,·)$, $\chi_{279}(1,·)$, $\chi_{279}(67,·)$, $\chi_{279}(7,·)$, $\chi_{279}(40,·)$, $\chi_{279}(169,·)$, $\chi_{279}(103,·)$, $\chi_{279}(109,·)$, $\chi_{279}(205,·)$, $\chi_{279}(49,·)$, $\chi_{279}(163,·)$, $\chi_{279}(214,·)$, $\chi_{279}(25,·)$, $\chi_{279}(175,·)$, $\chi_{279}(190,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{5} a^{5} - \frac{1}{5} a$, $\frac{1}{5} a^{6} - \frac{1}{5} a^{2}$, $\frac{1}{5} a^{7} - \frac{1}{5} a^{3}$, $\frac{1}{25} a^{8} - \frac{1}{25} a^{6} + \frac{4}{25} a^{4} - \frac{1}{5} a^{3} - \frac{4}{25} a^{2} + \frac{1}{5} a$, $\frac{1}{25} a^{9} - \frac{1}{25} a^{7} - \frac{1}{25} a^{5} - \frac{1}{5} a^{4} - \frac{4}{25} a^{3} + \frac{1}{5} a^{2} + \frac{1}{5} a$, $\frac{1}{125} a^{10} + \frac{2}{125} a^{9} + \frac{1}{125} a^{8} - \frac{12}{125} a^{7} + \frac{12}{125} a^{6} + \frac{3}{125} a^{5} + \frac{44}{125} a^{4} - \frac{3}{125} a^{3} - \frac{33}{125} a^{2} - \frac{3}{25} a$, $\frac{1}{125} a^{11} + \frac{2}{125} a^{9} + \frac{1}{125} a^{8} + \frac{6}{125} a^{7} - \frac{11}{125} a^{6} + \frac{8}{125} a^{5} - \frac{56}{125} a^{4} + \frac{28}{125} a^{3} - \frac{9}{125} a^{2} + \frac{6}{25} a$, $\frac{1}{625} a^{12} - \frac{2}{625} a^{11} - \frac{2}{625} a^{10} - \frac{6}{625} a^{9} - \frac{2}{125} a^{8} - \frac{11}{125} a^{7} - \frac{33}{625} a^{6} - \frac{39}{625} a^{5} + \frac{149}{625} a^{4} + \frac{302}{625} a^{3} + \frac{29}{125} a^{2} + \frac{7}{25} a$, $\frac{1}{3125} a^{13} + \frac{2}{3125} a^{12} + \frac{2}{625} a^{11} + \frac{6}{3125} a^{10} - \frac{4}{3125} a^{9} - \frac{6}{625} a^{8} - \frac{198}{3125} a^{7} - \frac{51}{3125} a^{6} + \frac{138}{3125} a^{5} - \frac{867}{3125} a^{4} - \frac{1322}{3125} a^{3} + \frac{13}{625} a^{2} - \frac{7}{25} a$, $\frac{1}{503060578191041796875} a^{14} - \frac{30981815651586449}{503060578191041796875} a^{13} + \frac{248471233170700133}{503060578191041796875} a^{12} + \frac{1138052893053555971}{503060578191041796875} a^{11} + \frac{82768055284390093}{100612115638208359375} a^{10} + \frac{9720992023190112874}{503060578191041796875} a^{9} + \frac{893426435092082582}{503060578191041796875} a^{8} - \frac{21333325098449197553}{503060578191041796875} a^{7} - \frac{2744164099335656261}{503060578191041796875} a^{6} + \frac{7118901912424934409}{100612115638208359375} a^{5} - \frac{42558277973848935541}{100612115638208359375} a^{4} - \frac{198237324748006101888}{503060578191041796875} a^{3} + \frac{22682386902271089382}{100612115638208359375} a^{2} - \frac{1398657105982163384}{4024484625528334375} a + \frac{69178693381109394}{160979385021133375}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 123454772619 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 15 |
| The 15 conjugacy class representatives for $C_{15}$ |
| Character table for $C_{15}$ |
Intermediate fields
| 3.3.77841.1, 5.5.923521.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $15$ | R | ${\href{/LocalNumberField/5.1.0.1}{1} }^{15}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{3}$ | $15$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{3}$ | $15$ | $15$ | $15$ | $15$ | R | ${\href{/LocalNumberField/37.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{3}$ | $15$ | $15$ | $15$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 31 | Data not computed | ||||||