Normalized defining polynomial
\( x^{15} - 93 x^{13} - 62 x^{12} + 3069 x^{11} + 3534 x^{10} - 43338 x^{9} - 62496 x^{8} + 258261 x^{7} + 375162 x^{6} - 681318 x^{5} - 871131 x^{4} + 723943 x^{3} + 645327 x^{2} - 209901 x + 5921 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2639300305759427100493462112721=3^{20}\cdot 31^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $106.68$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(279=3^{2}\cdot 31\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{279}(64,·)$, $\chi_{279}(1,·)$, $\chi_{279}(163,·)$, $\chi_{279}(196,·)$, $\chi_{279}(133,·)$, $\chi_{279}(193,·)$, $\chi_{279}(268,·)$, $\chi_{279}(160,·)$, $\chi_{279}(76,·)$, $\chi_{279}(109,·)$, $\chi_{279}(142,·)$, $\chi_{279}(112,·)$, $\chi_{279}(211,·)$, $\chi_{279}(121,·)$, $\chi_{279}(190,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} - \frac{2}{5} a^{10} + \frac{1}{5} a^{9} + \frac{2}{5} a^{8} - \frac{1}{5} a^{7} + \frac{2}{5} a^{6} - \frac{1}{5} a^{5} + \frac{2}{5} a^{3} - \frac{1}{5} a^{2} + \frac{1}{5} a - \frac{2}{5}$, $\frac{1}{5} a^{13} - \frac{2}{5} a^{11} + \frac{1}{5} a^{10} + \frac{2}{5} a^{9} - \frac{1}{5} a^{8} + \frac{2}{5} a^{7} - \frac{1}{5} a^{6} + \frac{2}{5} a^{4} - \frac{1}{5} a^{3} + \frac{1}{5} a^{2} - \frac{2}{5} a$, $\frac{1}{75669950457494895861561729218830405} a^{14} + \frac{2567169241314249616043243923273222}{75669950457494895861561729218830405} a^{13} - \frac{893578782406639662722633201529403}{15133990091498979172312345843766081} a^{12} + \frac{19875917299103109906420125885099042}{75669950457494895861561729218830405} a^{11} + \frac{4865281334367610216597521191813192}{15133990091498979172312345843766081} a^{10} + \frac{540209574380249951285333680715012}{15133990091498979172312345843766081} a^{9} - \frac{13040525402175349481658789966201496}{75669950457494895861561729218830405} a^{8} - \frac{33225837578086208182582658516169899}{75669950457494895861561729218830405} a^{7} + \frac{29017963814194924068058354952117002}{75669950457494895861561729218830405} a^{6} - \frac{3137492910729002141259702607955713}{15133990091498979172312345843766081} a^{5} + \frac{27196691529578968318719540025078678}{75669950457494895861561729218830405} a^{4} + \frac{18528776913441595472743156575315933}{75669950457494895861561729218830405} a^{3} - \frac{37364643268814642166241185175122537}{75669950457494895861561729218830405} a^{2} - \frac{28725732408418291761263917213984532}{75669950457494895861561729218830405} a + \frac{187102737260684948620484078762991}{396177751086360711317077116328955}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5067617902.44 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 15 |
| The 15 conjugacy class representatives for $C_{15}$ |
| Character table for $C_{15}$ |
Intermediate fields
| 3.3.77841.2, 5.5.923521.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $15$ | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{5}$ | $15$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{3}$ | $15$ | $15$ | $15$ | $15$ | $15$ | R | ${\href{/LocalNumberField/37.3.0.1}{3} }^{5}$ | $15$ | $15$ | $15$ | $15$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 31 | Data not computed | ||||||