Properties

Label 15.15.2630671832...0000.1
Degree $15$
Signature $[15, 0]$
Discriminant $2^{22}\cdot 5^{6}\cdot 23^{2}\cdot 37^{5}\cdot 491^{2}\cdot 21101^{4}\cdot 1513121^{2}$
Root discriminant $5772.15$
Ramified primes $2, 5, 23, 37, 491, 21101, 1513121$
Class number $3$ (GRH)
Class group $[3]$ (GRH)
Galois group 15T96

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-168808000, -1772484000, -8026820400, -20455309400, -32087024640, -31834343560, -19757797408, -7303718236, -1422699984, -84517920, 12964716, 1610262, -11016, -2754, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^15 - 2754*x^13 - 11016*x^12 + 1610262*x^11 + 12964716*x^10 - 84517920*x^9 - 1422699984*x^8 - 7303718236*x^7 - 19757797408*x^6 - 31834343560*x^5 - 32087024640*x^4 - 20455309400*x^3 - 8026820400*x^2 - 1772484000*x - 168808000)
 
gp: K = bnfinit(x^15 - 2754*x^13 - 11016*x^12 + 1610262*x^11 + 12964716*x^10 - 84517920*x^9 - 1422699984*x^8 - 7303718236*x^7 - 19757797408*x^6 - 31834343560*x^5 - 32087024640*x^4 - 20455309400*x^3 - 8026820400*x^2 - 1772484000*x - 168808000, 1)
 

Normalized defining polynomial

\( x^{15} - 2754 x^{13} - 11016 x^{12} + 1610262 x^{11} + 12964716 x^{10} - 84517920 x^{9} - 1422699984 x^{8} - 7303718236 x^{7} - 19757797408 x^{6} - 31834343560 x^{5} - 32087024640 x^{4} - 20455309400 x^{3} - 8026820400 x^{2} - 1772484000 x - 168808000 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $15$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[15, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(263067183205872529212832748534985625689305855623168000000=2^{22}\cdot 5^{6}\cdot 23^{2}\cdot 37^{5}\cdot 491^{2}\cdot 21101^{4}\cdot 1513121^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $5772.15$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 23, 37, 491, 21101, 1513121$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{10} a^{5} + \frac{1}{5} a^{3} - \frac{1}{5} a^{2}$, $\frac{1}{10} a^{6} + \frac{1}{5} a^{4} - \frac{1}{5} a^{3}$, $\frac{1}{20} a^{7} - \frac{1}{10} a^{4} + \frac{3}{10} a^{3} + \frac{1}{5} a^{2}$, $\frac{1}{100} a^{8} + \frac{1}{25} a^{6} - \frac{1}{25} a^{5} - \frac{4}{25} a^{4} - \frac{7}{25} a^{3} - \frac{9}{25} a^{2} + \frac{2}{5}$, $\frac{1}{100} a^{9} - \frac{1}{100} a^{7} - \frac{1}{25} a^{6} + \frac{1}{25} a^{5} - \frac{9}{50} a^{4} - \frac{13}{50} a^{3} + \frac{2}{5} a^{2} + \frac{2}{5} a$, $\frac{1}{32600} a^{10} - \frac{31}{16300} a^{8} - \frac{287}{16300} a^{7} + \frac{7}{326} a^{6} - \frac{91}{8150} a^{5} + \frac{161}{1630} a^{4} + \frac{2367}{8150} a^{3} + \frac{1409}{8150} a^{2} + \frac{59}{163} a - \frac{51}{815}$, $\frac{1}{163000} a^{11} - \frac{357}{81500} a^{9} + \frac{101}{40750} a^{8} - \frac{1769}{81500} a^{7} - \frac{453}{20375} a^{6} + \frac{161}{8150} a^{5} - \frac{5131}{40750} a^{4} + \frac{7958}{20375} a^{3} - \frac{6186}{20375} a^{2} - \frac{703}{4075} a + \frac{6}{25}$, $\frac{1}{815000} a^{12} + \frac{1}{815000} a^{10} + \frac{1017}{407500} a^{9} - \frac{1929}{407500} a^{8} + \frac{8143}{407500} a^{7} - \frac{1383}{40750} a^{6} + \frac{5599}{203750} a^{5} - \frac{36059}{203750} a^{4} - \frac{93407}{203750} a^{3} + \frac{243}{40750} a^{2} + \frac{1633}{20375} a + \frac{694}{4075}$, $\frac{1}{1630000000} a^{13} - \frac{31}{81500000} a^{12} + \frac{93}{815000000} a^{11} - \frac{1321}{101875000} a^{10} - \frac{2218489}{815000000} a^{9} - \frac{217591}{407500000} a^{8} - \frac{886609}{40750000} a^{7} - \frac{580823}{12734375} a^{6} - \frac{16159839}{407500000} a^{5} + \frac{2232847}{101875000} a^{4} - \frac{8041151}{40750000} a^{3} + \frac{3172839}{10187500} a^{2} + \frac{857401}{8150000} a - \frac{1217337}{4075000}$, $\frac{1}{2790560000000} a^{14} + \frac{53}{1395280000000} a^{13} + \frac{374033}{1395280000000} a^{12} + \frac{76539}{27905600000} a^{11} - \frac{4116857}{1395280000000} a^{10} + \frac{137606951}{348820000000} a^{9} + \frac{552182961}{174410000000} a^{8} + \frac{3214933581}{174410000000} a^{7} + \frac{743586009}{27905600000} a^{6} - \frac{7119904863}{348820000000} a^{5} + \frac{2871352089}{348820000000} a^{4} - \frac{1146789387}{6976400000} a^{3} - \frac{34702184539}{69764000000} a^{2} + \frac{1115197813}{3488200000} a + \frac{724820669}{3488200000}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{3}$, which has order $3$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $14$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 515423356395000000000000 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

15T96:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 1296000
The 65 conjugacy class representatives for [A(5)^3]S(3)=A(5)wrS(3) are not computed
Character table for [A(5)^3]S(3)=A(5)wrS(3) is not computed

Intermediate fields

3.3.148.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 18 sibling: data not computed
Degree 30 siblings: data not computed
Degree 36 siblings: data not computed
Degree 45 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R $15$ R ${\href{/LocalNumberField/7.9.0.1}{9} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/11.9.0.1}{9} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/13.5.0.1}{5} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ R ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ R ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ $15$ ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.3.2.1$x^{3} - 2$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$
2.12.20.69$x^{12} + 2 x^{11} + 2 x^{10} + 2 x^{9} + 2 x^{6} + 2 x^{4} + 2$$12$$1$$20$12T206$[4/3, 4/3, 4/3, 4/3, 2, 2]_{3}^{6}$
$5$$\Q_{5}$$x + 2$$1$$1$$0$Trivial$[\ ]$
5.2.1.2$x^{2} + 10$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.2$x^{2} + 10$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$23$$\Q_{23}$$x + 2$$1$$1$$0$Trivial$[\ ]$
23.4.2.1$x^{4} + 299 x^{2} + 25921$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
23.10.0.1$x^{10} - x + 7$$1$$10$$0$$C_{10}$$[\ ]^{10}$
$37$37.5.0.1$x^{5} - x + 13$$1$$5$$0$$C_5$$[\ ]^{5}$
37.10.5.1$x^{10} - 2738 x^{6} + 1874161 x^{2} - 11719128733$$2$$5$$5$$C_{10}$$[\ ]_{2}^{5}$
491Data not computed
21101Data not computed
1513121Data not computed