Normalized defining polynomial
\( x^{15} - 7 x^{14} - 7359928431352125900718990 x^{13} + 1146457846473474900984125591032014636 x^{12} + 19416023607681635771974377467999027201012470447336 x^{11} - 4851441635553959977410832765485972884294052691589377374372104 x^{10} - 24112141174821303187004606425942845234248871089681871165011461250635692496 x^{9} + 7525619576196337038633314245779978268926520611790180372053298333899736463357803938528 x^{8} + 14831714078915979721371947057780505772689617125060296449666823575343124172731731023953452534616512 x^{7} - 5256932037437038243776691960971134474163890327375515560268021053433747350168623150274653781603424258659192064 x^{6} - 4187440903299802988131602439725223670111389325383345006067783417457128080730177931291623405329927138776601510804218358016 x^{5} + 1636289240075960072632144299035232342883646538534039778167325700212172858442261459632125257443454155238866530126648359882779165933056 x^{4} + 383494372081854656235932138604055828450497422037577510303835612027653867214885179476035568117107343912098335867193187164865789498037634655836160 x^{3} - 186190519991829328117093062073654072984048894439789642881671127020544062770027703363859101244685185827323447461850817494168568946387320074577080553170765824 x^{2} + 13508930687881199540651510080488415574271789490099733587937952758668580093635509254682839181235154905691209505141762824480586168456201619647093939738893681190016425984 x + 507411620437731696863219371714152920724096317226541786887422139156853975207125192962971274329824077544411017905137335814893509681760672329266984926805264627052495547140209049600 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(261711216012178434229232736804680455361755700913398931403201246197510523383924530321247075378865559996709315226676496181953799709160690287776011448626194421536853852385755199905174606858032982044438567470076206915271487170203130635555654773492252482912794411589978657305336990569015538977077452153873397203534448786888385282856989783682669985984178930073795470400=2^{6}\cdot 5^{2}\cdot 404437275739528639943447165207905931274241609828749980131518221487641526662308471736108068559317412898930999160593333401858556355994994504701122167638187177395258981867820557197013^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1{,}449{,}399{,}661{,}951{,}955{,}880{,}704{,}722.09$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 404437275739528639943447165207905931274241609828749980131518221487641526662308471736108068559317412898930999160593333401858556355994994504701122167638187177395258981867820557197013$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{334314083601} a^{2} - \frac{5618541644}{111438027867} a + \frac{83963211563}{334314083601}$, $\frac{1}{223531812987952834254402} a^{3} - \frac{324156654031}{223531812987952834254402} a^{2} + \frac{36769198053886239379378}{111765906493976417127201} a + \frac{46710006741607904743808}{111765906493976417127201}$, $\frac{1}{149459666429475122873542093460523204} a^{4} - \frac{297143599529}{149459666429475122873542093460523204} a^{3} - \frac{4409718840075158791478}{4151657400818753413153947040570089} a^{2} + \frac{463205281505369643471740746463951}{1009862611009967046442851982841373} a + \frac{10768928839093906455081527601972545}{37364916607368780718385523365130801}$, $\frac{1}{99932942835362238797790197568307819630512755208} a^{5} - \frac{10004835001}{3701220105013416251770007317344734060389361304} a^{4} - \frac{83388317245851527511383}{49966471417681119398895098784153909815256377604} a^{3} - \frac{10649200484979561142912806375085109}{12491617854420279849723774696038477453814094401} a^{2} - \frac{1438530771557036663211508553736098815372361326}{4163872618140093283241258232012825817938031467} a + \frac{513595159411238007760261742934509488274932226}{12491617854420279849723774696038477453814094401}$, $\frac{1}{66817980411110490961125915687819134640114540350208320288016} a^{6} - \frac{243117490525}{66817980411110490961125915687819134640114540350208320288016} a^{5} - \frac{10879605351698273192770}{4176123775694405685070369730488695915007158771888020018001} a^{4} - \frac{7474895849751749736286027817456117}{5568165034259207580093826307318261220009545029184026690668} a^{3} + \frac{7888358106645692142579703985186233903391399705}{8352247551388811370140739460977391830014317543776040036002} a^{2} - \frac{3684231581900983558229164470909306499008728560916312168299}{8352247551388811370140739460977391830014317543776040036002} a - \frac{1092320466889120587893989047291994093577390590858708558822}{4176123775694405685070369730488695915007158771888020018001}$, $\frac{1}{44676383778419946048852008436690487190885454981710464413067130844851232} a^{7} - \frac{216104436023}{44676383778419946048852008436690487190885454981710464413067130844851232} a^{6} - \frac{10035612869395203593215}{2482021321023330336047333802038360399493636387872803578503729491380624} a^{5} - \frac{23600253038557954536920409701770511}{11169095944604986512213002109172621797721363745427616103266782711212808} a^{4} + \frac{1896369613291628928596366522611297152529991651}{1396136993075623314026625263646577724715170468178452012908347838901601} a^{3} - \frac{385682548270541105330905085808716017995144053116342271821}{620505330255832584011833450509590099873409096968200894625932372845156} a^{2} + \frac{596350874330341738625515779424861361690442888897355561167354048737539}{2792273986151246628053250527293155449430340936356904025816695677803202} a - \frac{140912206624254894591683829551303247290962902585993163067777069273671}{1396136993075623314026625263646577724715170468178452012908347838901601}$, $\frac{1}{29871888602978092206123639957161001700990199283940948251533320356181601070511692864} a^{8} - \frac{63030460507}{9957296200992697402041213319053667233663399761313649417177773452060533690170564288} a^{7} - \frac{23309834069690866975427}{3733986075372261525765454994645125212623774910492618531441665044522700133813961608} a^{6} - \frac{6205042386716677031976118336897049}{1866993037686130762882727497322562606311887455246309265720832522261350066906980804} a^{5} + \frac{2422240330790245715896577163730046806783423781}{1244662025124087175255151664881708404207924970164206177147221681507566711271320536} a^{4} - \frac{3266235991555736204504011711340575420587456191414808595181}{3733986075372261525765454994645125212623774910492618531441665044522700133813961608} a^{3} - \frac{30308191871040075225199223325594909921260035450153063242695728406923}{25229635644407172471388209423277873058268749395220395482713953003531757660905146} a^{2} + \frac{2708694164198383624018330596685111240461305042135910669247934249131911827398838}{17286972571167877434099328678912616725110069030058419127044745576493982100990563} a - \frac{84137058193850622571699327240445349118165478035897566017265483085675877045740372}{466748259421532690720681874330640651577971863811577316430208130565337516726745201}$, $\frac{1}{19973186127471554030739010185561494362563481375786169021020650475987221754850154367966662246528} a^{9} - \frac{162078327019}{19973186127471554030739010185561494362563481375786169021020650475987221754850154367966662246528} a^{8} - \frac{95793304176206092230479}{9986593063735777015369505092780747181281740687893084510510325237993610877425077183983331123264} a^{7} - \frac{3259938647897622479962769529879113}{624162066483486063460594068298796698830108792993317781906895327374600679839067323998958195204} a^{6} + \frac{6931486696011541632695526528396137255950342147}{2496648265933944253842376273195186795320435171973271127627581309498402719356269295995832780816} a^{5} - \frac{3069939661337997955743552971183310424567501121695860858995}{2496648265933944253842376273195186795320435171973271127627581309498402719356269295995832780816} a^{4} - \frac{2286921703885110123596243269212067961833427886789439464495245105889733}{1248324132966972126921188136597593397660217585986635563813790654749201359678134647997916390408} a^{3} + \frac{57988480914270998060031925055704251116834845614275007239776162276673807627097725}{312081033241743031730297034149398349415054396496658890953447663687300339919533661999479097602} a^{2} - \frac{72351601896934716955059146405980585464288575516811230118709661984818698763700879200057913545}{312081033241743031730297034149398349415054396496658890953447663687300339919533661999479097602} a - \frac{68218708795666876471248234764604608061067257436430776758612900077232943330179690392151483166}{156040516620871515865148517074699174707527198248329445476723831843650169959766830999739548801}$, $\frac{1}{13354634833595717113963739949975591898905075834668367614386028139153184993517400869200324077333384527974656} a^{10} - \frac{135065272517}{13354634833595717113963739949975591898905075834668367614386028139153184993517400869200324077333384527974656} a^{9} - \frac{170108367216813724523}{11592564959718504439204635373242701301132878328705180220821204981903806417983854921180836872685229624978} a^{8} - \frac{9124448018833413176735113408438711}{1112886236132976426163644995831299324908756319555697301198835678262765416126450072433360339777782043997888} a^{7} + \frac{2193081031512067659208569247810059889396225081}{556443118066488213081822497915649662454378159777848650599417839131382708063225036216680169888891021998944} a^{6} - \frac{320299892604305586177611849766684302025137978385933573689}{185481039355496071027274165971883220818126053259282883533139279710460902687741678738893389962963673999648} a^{5} - \frac{388064321263316250684545976564152893633206870096432946086860890310413}{139110779516622053270455624478912415613594539944462162649854459782845677015806259054170042472222755499736} a^{4} + \frac{28362863838038134554191737424856792336367489850961702484444149856907851962860489}{139110779516622053270455624478912415613594539944462162649854459782845677015806259054170042472222755499736} a^{3} + \frac{26810653037803744892825718489200831363575330559350980808280279972926869680504381881880710223}{23185129919437008878409270746485402602265756657410360441642409963807612835967709842361673745370459249956} a^{2} - \frac{3285481017041865089167660104250010471838973318056543734163992382137381321525121813202653304179141756469}{52166542318733269976420859179592155855097952479173310993695422418567128880927347145313765927083533312401} a - \frac{25843499609004239160722771335091340982898354273763510085066704061600439757675853629758503782351269879989}{52166542318733269976420859179592155855097952479173310993695422418567128880927347145313765927083533312401}$, $\frac{1}{8929285012439090589346440404237527176000019725909131009492103083198392698536389994468134419211852608467198138386432512} a^{11} - \frac{36017406005}{2976428337479696863115480134745842392000006575303043669830701027732797566178796664822711473070617536155732712795477504} a^{10} - \frac{99806682300799307186015}{4464642506219545294673220202118763588000009862954565504746051541599196349268194997234067209605926304233599069193216256} a^{9} - \frac{9565582091941319019101969051883127}{744107084369924215778870033686460598000001643825760917457675256933199391544699166205677868267654384038933178198869376} a^{8} + \frac{57495595158204477858545943315289081830872545}{10334820616248947441373194912311952750000022830913346075801045235183324882565266197301081503717422000540738586095408} a^{7} - \frac{901657860381378895383922906023518614139269615171688356405}{372053542184962107889435016843230299000000821912880458728837628466599695772349583102838934133827192019466589099434688} a^{6} - \frac{789107060210489781648010283253228505818063061969179874598040665917643}{186026771092481053944717508421615149500000410956440229364418814233299847886174791551419467066913596009733294549717344} a^{5} + \frac{5960020392490178393729267383601505173730887957335308438670449666953473965243721}{31004461848746842324119584736935858250000068492740038227403135705549974647695798591903244511152266001622215758286224} a^{4} + \frac{10101880363344512399151318863176294865148698392259427823500542404051307836830674335028977051}{5813336596640032935772422138175473421875012842388757167638087944790620246442962235981858345841049875304165454678667} a^{3} - \frac{3311892691233910256072096437987610741462075417192223611882444293172545874921520750592514326534629430181}{69760039159680395229269065658105681062500154108665086011657055337487442957315546831782300150092598503649985456144004} a^{2} + \frac{5014008011374095424664834648043882928485788220600794825953391277007832046863396399749427058865872754390941148353791}{11626673193280065871544844276350946843750025684777514335276175889581240492885924471963716691682099750608330909357334} a - \frac{7335527986385119279110819146370302918321916282652266825227386464993206169190154498815520225445216649716193084394953}{17440009789920098807317266414526420265625038527166271502914263834371860739328886707945575037523149625912496364036001}$, $\frac{1}{11940742944582873824828712949016115579915120141700937320146417898822789260349290699805439271019587493908771195611013464243649742848} a^{12} - \frac{81039163513}{11940742944582873824828712949016115579915120141700937320146417898822789260349290699805439271019587493908771195611013464243649742848} a^{11} - \frac{25316523131987474453195}{1492592868072859228103589118627014447489390017712617165018302237352848657543661337475679908877448436738596399451376683030456217856} a^{10} - \frac{15022393975075801139447869439622073}{1492592868072859228103589118627014447489390017712617165018302237352848657543661337475679908877448436738596399451376683030456217856} a^{9} + \frac{1940643630498878190083268624803388858218817743}{497530956024286409367863039542338149163130005904205721672767412450949552514553779158559969625816145579532133150458894343485405952} a^{8} + \frac{4722419913120634860132624138571631241216059742167154447503}{497530956024286409367863039542338149163130005904205721672767412450949552514553779158559969625816145579532133150458894343485405952} a^{7} - \frac{116911492406549707733083415322857085940534848878337595696749817281415}{20730456501011933723660959980930756215130416912675238403031975518789564688106407464939998734409006065813838881269120597645225248} a^{6} - \frac{15264862742530958763017625069265522332132292268345820464652465356133217205889845}{7773921187879475146372859992849033580673906342253214401136990819546086758039902799352499525403377274680189580475920224116959468} a^{5} + \frac{15351488555815141766500585166707719472562731409411077142785009980048175455245761234000593647}{62191369503035801170982879942792268645391250738025715209095926556368694064319222394819996203227018197441516643807361792935675744} a^{4} - \frac{3928315578153023359546948819208024398043589950214108682147452730437074841578299623041634066487187086469}{2521271736609559506931738376059146026164510165055096562530915941474406516121049556546756602833527764761142566640838991605500368} a^{3} - \frac{35438406210957473207279503006196110188791017708678382912153143203588069375383731130753869068388200270947874387016589}{46643527127276850878237159957094201484043438053519286406821944917276520548239416796114997152420263648081137482855521344701756808} a^{2} + \frac{2175442002480358318640370090812309926141386311376441583575426011965267873268186400018634233784761091176915443377406324477059889}{23321763563638425439118579978547100742021719026759643203410972458638260274119708398057498576210131824040568741427760672350878404} a - \frac{644483898432766615520968063068723891963857358100469862201360842468694611484268843362836765026069952920490508822383801805441128}{5830440890909606359779644994636775185505429756689910800852743114659565068529927099514374644052532956010142185356940168087719601}$, $\frac{1}{7983917070066659579893241940685209829360044143073132251174980909975449456536835450951614837772341739894302023513362159122976288727696847671296} a^{13} - \frac{54026109011}{7983917070066659579893241940685209829360044143073132251174980909975449456536835450951614837772341739894302023513362159122976288727696847671296} a^{12} - \frac{11373405577592941911727}{443550948337036643327402330038067212742224674615174013954165606109747192029824191719534157654018985549683445750742342173498682707094269315072} a^{11} - \frac{15706270594241322526433358622655963}{997989633758332447486655242585651228670005517884141531396872613746931182067104431368951854721542717486787752939170269890372036090962105958912} a^{10} + \frac{5416130144297395524488586875049875318425230583}{997989633758332447486655242585651228670005517884141531396872613746931182067104431368951854721542717486787752939170269890372036090962105958912} a^{9} + \frac{176846023158528155782637132957472287906571267277808076907}{12320859676028795647983398056612978131728463183754833720949044614159644223050671992209282157056082931935651270853953949263852297419285258752} a^{8} - \frac{1339154415631367585608199122472526893711410521253626443018672688972727}{166331605626388741247775873764275204778334252980690255232812102291155197011184071894825309120257119581131292156528378315062006015160350993152} a^{7} - \frac{65796655744556264647219430027005049911832017779054582418177776642254976123579875}{20791450703298592655971984220534400597291781622586281904101512786394399626398008986853163640032139947641411519566047289382750751895043874144} a^{6} + \frac{1339187111330981989622100922538483425958181039339880698002277543424114218267034325205992903}{4620322378510798367993774271229866799398173693908062645355891730309866583644001997078480808896031099475869226570232730973944611532231972032} a^{5} - \frac{72362820248047134381437050506656075077294066261078704092792442080091143097079883718756327621247886638081}{31187176054947888983957976330801600895937672433879422856152269179591599439597013480279745460048209921462117279349070934074126127842565811216} a^{4} - \frac{4675193570376372940833579888761990247285352075296317102944606637653966198682296520497687351921453548162480192010649}{3898397006868486122994747041350200111992209054234927857019033647448949929949626685034968182506026240182764659918633866759265765980320726402} a^{3} + \frac{94266233514447419553563728438076985668126759775008523643212046900038898515060415939947225391049437865028466353813435808860725}{866310445970774693998832675855600024887157567607761746004229699433099984433250374452215151668005831151725479981918637057614614662293494756} a^{2} - \frac{1054908105443828155263795133515113773846083112473799891352420017487805987681746757798749294571741454806826645579406058696178305927160734227}{7796794013736972245989494082700400223984418108469855714038067294897899859899253370069936365012052480365529319837267733518531531960641452804} a - \frac{488121258023777558824194332760716591584113645871247498235511930459194173036424951016295287409521393082535150003198663975671400830250846212}{1949198503434243061497373520675100055996104527117463928509516823724474964974813342517484091253013120091382329959316933379632882990160363201}$, $\frac{1}{5338271837651432410870473649626309444233801483952803080952483796834222928940411245770837395761949418073130967184779249211257119659303915713131626224033792} a^{14} - \frac{3001450501}{593141315294603601207830405514034382692644609328089231216942644092691436548934582863426377306883268674792329687197694356806346628811546190347958469337088} a^{13} - \frac{6443147206997440335269}{166820994926607262839702301550822170132306296373525096279765118651069466529387851430338668617560919314785342724524351537851784989353247366035363319501056} a^{12} - \frac{32795078099816555237110724103064219}{1334567959412858102717618412406577361058450370988200770238120949208555732235102811442709348940487354518282741796194812302814279914825978928282906556008448} a^{11} + \frac{1663951933570664917247160740968386045970311719}{222427993235476350452936402067762893509741728498033461706353491534759288705850468573784891490081225753047123632699135383802379985804329821380484426001408} a^{10} + \frac{14470834094618611288193268842487939466377198008052950464133}{667283979706429051358809206203288680529225185494100385119060474604277866117551405721354674470243677259141370898097406151407139957412989464141453278004224} a^{9} - \frac{318665718398445842405429289352823108083212528010042704951195152017747}{27803499154434543806617050258470361688717716062254182713294186441844911088231308571723111436260153219130890454087391922975297498225541227672560553250176} a^{8} - \frac{93757982862082368418097645654909890212023872617059516635972335981493162971867659}{18535666102956362537744700172313574459145144041502788475529457627896607392154205714482074290840102146087260302724927948650198332150360818448373702166784} a^{7} + \frac{8497946706624778373157159770700625343428532172190457424230323418892195511989365225403241627}{27803499154434543806617050258470361688717716062254182713294186441844911088231308571723111436260153219130890454087391922975297498225541227672560553250176} a^{6} - \frac{144237270781333012026541731170154416959387400171313046939721154261873561561591640387587282480507956585531}{41705248731651815709925575387705542533076574093381274069941279662767366632346962857584667154390229828696335681131087884462946247338311841508840829875264} a^{5} - \frac{2186460520571661662598850900695241624895286948720125289918165878028606104837070674440226996281209197794813396543103}{1158479131434772658609043760769598403696571502593924279720591101743537962009637857155129643177506384130453768920307996790637395759397551153023356385424} a^{4} + \frac{595813584182072906174442526248895391301317491662600269385473614520554977952602470478067051314624382546107478427762749476962929}{5213156091456476963740696923463192816634571761672659258742659957845920829043370357198083394298778728587041960141385985557868280917288980188605103734408} a^{3} + \frac{6764803678425760335065022046726939358651659825410478521245845061037377450421072977223664326066739896110922962590434994835754925004050824127}{5213156091456476963740696923463192816634571761672659258742659957845920829043370357198083394298778728587041960141385985557868280917288980188605103734408} a^{2} - \frac{279060659847867559504940198172204952974579379718365950920956365669734303608339280026624126247329397208757491846194978225271587077072520165770684424915}{868859348576079493956782820577198802772428626945443209790443326307653471507228392866347232383129788097840326690230997592978046819548163364767517289068} a + \frac{253406350640029838392607397769404553076363991374254362719365272676161128745728770851117149681278410988410588049497260922764615223770627556243162823129}{651644511432059620467587115432899102079321470209082407342832494730740103630421294649760424287347341073380245017673248194733535114661122523575637966801}$
Class group and class number
Not computed
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 653837184000 |
| The 94 conjugacy class representatives for A15 are not computed |
| Character table for A15 is not computed |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{3}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }$ | ${\href{/LocalNumberField/13.11.0.1}{11} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }$ | ${\href{/LocalNumberField/19.11.0.1}{11} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | $15$ | ${\href{/LocalNumberField/29.11.0.1}{11} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.11.0.1}{11} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.7.0.1}{7} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | $15$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ | $15$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.4.6.8 | $x^{4} + 2 x^{3} + 2$ | $4$ | $1$ | $6$ | $D_{4}$ | $[2, 2]^{2}$ | |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 5.7.0.1 | $x^{7} - x + 2$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ | |
| 404437275739528639943447165207905931274241609828749980131518221487641526662308471736108068559317412898930999160593333401858556355994994504701122167638187177395258981867820557197013 | Data not computed | ||||||