Normalized defining polynomial
\( x^{15} - 2 x^{14} - 63 x^{13} + 133 x^{12} + 1422 x^{11} - 3182 x^{10} - 14085 x^{9} + 33507 x^{8} + 61557 x^{7} - 157405 x^{6} - 111611 x^{5} + 318268 x^{4} + 77338 x^{3} - 252062 x^{2} - 16054 x + 47081 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2572344674223769220522333521=11^{12}\cdot 31^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $67.20$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(341=11\cdot 31\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{341}(1,·)$, $\chi_{341}(67,·)$, $\chi_{341}(36,·)$, $\chi_{341}(5,·)$, $\chi_{341}(335,·)$, $\chi_{341}(273,·)$, $\chi_{341}(180,·)$, $\chi_{341}(311,·)$, $\chi_{341}(56,·)$, $\chi_{341}(25,·)$, $\chi_{341}(218,·)$, $\chi_{341}(284,·)$, $\chi_{341}(125,·)$, $\chi_{341}(280,·)$, $\chi_{341}(191,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{46} a^{12} + \frac{1}{23} a^{11} - \frac{2}{23} a^{10} - \frac{11}{46} a^{9} - \frac{11}{23} a^{8} + \frac{5}{23} a^{7} - \frac{5}{23} a^{6} - \frac{17}{46} a^{5} - \frac{17}{46} a^{4} - \frac{4}{23} a^{3} + \frac{3}{23} a^{2} - \frac{11}{23} a - \frac{1}{2}$, $\frac{1}{46} a^{13} - \frac{4}{23} a^{11} - \frac{3}{46} a^{10} + \frac{4}{23} a^{8} + \frac{8}{23} a^{7} + \frac{3}{46} a^{6} + \frac{17}{46} a^{5} - \frac{10}{23} a^{4} + \frac{11}{23} a^{3} + \frac{6}{23} a^{2} + \frac{21}{46} a$, $\frac{1}{21432297989233180085436105638} a^{14} - \frac{83418802314858398540884016}{10716148994616590042718052819} a^{13} + \frac{63642103611520365118509182}{10716148994616590042718052819} a^{12} - \frac{174289252130827635999253837}{10716148994616590042718052819} a^{11} - \frac{1305745576927150511900599}{98313293528592569199248191} a^{10} - \frac{10010604777878601218962948311}{21432297989233180085436105638} a^{9} + \frac{529392101276930714945154882}{10716148994616590042718052819} a^{8} - \frac{7282148003087547927797089629}{21432297989233180085436105638} a^{7} + \frac{5893744120179181982266270499}{21432297989233180085436105638} a^{6} - \frac{2615820834170913066190321709}{10716148994616590042718052819} a^{5} - \frac{974839268981658185376101563}{21432297989233180085436105638} a^{4} - \frac{2832312524621501228587448993}{21432297989233180085436105638} a^{3} - \frac{543556833727915521171257431}{10716148994616590042718052819} a^{2} - \frac{1942384847094288597932452883}{10716148994616590042718052819} a + \frac{529663975870120488188633}{10470101606855486118923354}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 920271857.6558672 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 15 |
| The 15 conjugacy class representatives for $C_{15}$ |
| Character table for $C_{15}$ |
Intermediate fields
| 3.3.961.1, \(\Q(\zeta_{11})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{3}$ | $15$ | $15$ | $15$ | R | $15$ | $15$ | $15$ | ${\href{/LocalNumberField/23.1.0.1}{1} }^{15}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{3}$ | R | $15$ | $15$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{3}$ | $15$ | $15$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.15.12.1 | $x^{15} + 165 x^{10} + 5324 x^{5} + 323433$ | $5$ | $3$ | $12$ | $C_{15}$ | $[\ ]_{5}^{3}$ |
| $31$ | 31.15.10.1 | $x^{15} + 893730 x^{6} - 923521 x^{3} + 28629151000$ | $3$ | $5$ | $10$ | $C_{15}$ | $[\ ]_{3}^{5}$ |