Normalized defining polynomial
\( x^{15} - 420 x^{13} - 580 x^{12} + 71510 x^{11} + 184558 x^{10} - 6191100 x^{9} - 22494140 x^{8} + 278723315 x^{7} + 1303942895 x^{6} - 5695992303 x^{5} - 35890644050 x^{4} + 16640248995 x^{3} + 365694137360 x^{2} + 693107493395 x + 402871723939 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(248398977558713794925562108830363540177001953125=5^{13}\cdot 257^{5}\cdot 883^{2}\cdot 15257253491^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1444.36$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 257, 883, 15257253491$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{95} a^{13} + \frac{7}{95} a^{12} - \frac{42}{95} a^{11} + \frac{4}{95} a^{10} - \frac{8}{19} a^{9} - \frac{36}{95} a^{8} + \frac{33}{95} a^{7} + \frac{32}{95} a^{6} + \frac{26}{95} a^{5} + \frac{8}{19} a^{4} + \frac{26}{95} a^{3} + \frac{27}{95} a^{2} - \frac{22}{95} a + \frac{9}{95}$, $\frac{1}{173466587123158486530790704272142873975} a^{14} + \frac{179198229188564828495460907154213666}{173466587123158486530790704272142873975} a^{13} + \frac{61281476026902118747942370808335839036}{173466587123158486530790704272142873975} a^{12} + \frac{10633763369933231961957785545803919753}{24780941017594069504398672038877553425} a^{11} - \frac{53710867860727476732924500826232033979}{173466587123158486530790704272142873975} a^{10} + \frac{3363746772626623405975203167572209789}{8260313672531356501466224012959184475} a^{9} + \frac{3881223224210515837050068306045237293}{57822195707719495510263568090714291325} a^{8} + \frac{67071415307809553069364601483919497474}{173466587123158486530790704272142873975} a^{7} + \frac{79026842199333099014015081195323943674}{173466587123158486530790704272142873975} a^{6} - \frac{2625144618634229912797107726086231171}{173466587123158486530790704272142873975} a^{5} + \frac{4578599907798057704687833720979097386}{173466587123158486530790704272142873975} a^{4} - \frac{78490345790120118412671081511356888049}{173466587123158486530790704272142873975} a^{3} + \frac{70657565590106301381360940049974968811}{173466587123158486530790704272142873975} a^{2} - \frac{72025429336533598342132353377403253664}{173466587123158486530790704272142873975} a - \frac{51241239088116318733541588187036277754}{173466587123158486530790704272142873975}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12239607085800000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 2592000 |
| The 70 conjugacy class representatives for [A(5)^3:2]S(3) are not computed |
| Character table for [A(5)^3:2]S(3) is not computed |
Intermediate fields
| 3.3.257.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
| Degree 45 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }{,}\,{\href{/LocalNumberField/2.3.0.1}{3} }$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | $15$ | $15$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.9.0.1}{9} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.3.2.1 | $x^{3} - 5$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 5.10.10.11 | $x^{10} + 5 x^{6} + 10 x^{5} + 25 x^{2} + 25 x + 25$ | $5$ | $2$ | $10$ | $(C_5^2 : C_4) : C_2$ | $[5/4, 5/4]_{4}^{2}$ | |
| 257 | Data not computed | ||||||
| 883 | Data not computed | ||||||
| 15257253491 | Data not computed | ||||||