Properties

Label 15.15.2398011293...8032.1
Degree $15$
Signature $[15, 0]$
Discriminant $2^{16}\cdot 3^{4}\cdot 37^{2}\cdot 53^{9}$
Root discriminant $49.20$
Ramified primes $2, 3, 37, 53$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 15T56

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -15, -81, -170, 16, 583, 621, -357, -864, -181, 341, 167, -27, -24, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^15 - 24*x^13 - 27*x^12 + 167*x^11 + 341*x^10 - 181*x^9 - 864*x^8 - 357*x^7 + 621*x^6 + 583*x^5 + 16*x^4 - 170*x^3 - 81*x^2 - 15*x - 1)
 
gp: K = bnfinit(x^15 - 24*x^13 - 27*x^12 + 167*x^11 + 341*x^10 - 181*x^9 - 864*x^8 - 357*x^7 + 621*x^6 + 583*x^5 + 16*x^4 - 170*x^3 - 81*x^2 - 15*x - 1, 1)
 

Normalized defining polynomial

\( x^{15} - 24 x^{13} - 27 x^{12} + 167 x^{11} + 341 x^{10} - 181 x^{9} - 864 x^{8} - 357 x^{7} + 621 x^{6} + 583 x^{5} + 16 x^{4} - 170 x^{3} - 81 x^{2} - 15 x - 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $15$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[15, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(23980112932460739050668032=2^{16}\cdot 3^{4}\cdot 37^{2}\cdot 53^{9}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $49.20$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 37, 53$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{111} a^{14} + \frac{10}{111} a^{13} - \frac{35}{111} a^{12} - \frac{44}{111} a^{11} - \frac{17}{37} a^{10} + \frac{53}{111} a^{9} + \frac{16}{111} a^{8} - \frac{38}{111} a^{7} + \frac{40}{111} a^{6} + \frac{22}{111} a^{5} + \frac{26}{111} a^{4} + \frac{18}{37} a^{3} + \frac{1}{3} a^{2} - \frac{44}{111} a - \frac{11}{111}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $14$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 122000230.472 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

15T56:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 4860
The 63 conjugacy class representatives for [3^5]F(5)=3wrF(5) are not computed
Character table for [3^5]F(5)=3wrF(5) is not computed

Intermediate fields

5.5.2382032.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 15 sibling: data not computed
Degree 30 siblings: data not computed
Degree 45 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ $15$ $15$ ${\href{/LocalNumberField/13.5.0.1}{5} }^{3}$ ${\href{/LocalNumberField/17.3.0.1}{3} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ R ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ $15$ ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}$ R $15$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.3.0.1$x^{3} - x + 1$$1$$3$$0$$C_3$$[\ ]^{3}$
2.12.16.11$x^{12} + 20 x^{10} - 44 x^{8} - 4 x^{6} - 16 x^{4} - 48$$6$$2$$16$$C_3\times (C_3 : C_4)$$[2]_{3}^{6}$
$3$3.3.4.3$x^{3} - 3 x^{2} + 12$$3$$1$$4$$C_3$$[2]$
3.12.0.1$x^{12} - x^{4} - x^{3} - x^{2} + x - 1$$1$$12$$0$$C_{12}$$[\ ]^{12}$
$37$37.2.0.1$x^{2} - x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
37.2.0.1$x^{2} - x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
37.2.0.1$x^{2} - x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
37.2.0.1$x^{2} - x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
37.2.0.1$x^{2} - x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
37.2.0.1$x^{2} - x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
37.3.2.1$x^{3} - 37$$3$$1$$2$$C_3$$[\ ]_{3}$
$53$53.3.0.1$x^{3} - x + 8$$1$$3$$0$$C_3$$[\ ]^{3}$
53.4.3.2$x^{4} - 212$$4$$1$$3$$C_4$$[\ ]_{4}$
53.4.3.2$x^{4} - 212$$4$$1$$3$$C_4$$[\ ]_{4}$
53.4.3.2$x^{4} - 212$$4$$1$$3$$C_4$$[\ ]_{4}$