Normalized defining polynomial
\( x^{15} - x^{14} - 138 x^{13} + 261 x^{12} + 5937 x^{11} - 13489 x^{10} - 113742 x^{9} + 294231 x^{8} + 1029158 x^{7} - 3121135 x^{6} - 3764830 x^{5} + 15651747 x^{4} + 191261 x^{3} - 29662843 x^{2} + 18560312 x + 2683361 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2375614325883809574306005975647441=11^{12}\cdot 31^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $167.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(341=11\cdot 31\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{341}(1,·)$, $\chi_{341}(67,·)$, $\chi_{341}(262,·)$, $\chi_{341}(38,·)$, $\chi_{341}(103,·)$, $\chi_{341}(9,·)$, $\chi_{341}(47,·)$, $\chi_{341}(80,·)$, $\chi_{341}(81,·)$, $\chi_{341}(82,·)$, $\chi_{341}(163,·)$, $\chi_{341}(245,·)$, $\chi_{341}(56,·)$, $\chi_{341}(159,·)$, $\chi_{341}(312,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{276248960266657575494685372195922746059267} a^{14} - \frac{85925854511237384478225500795741910312463}{276248960266657575494685372195922746059267} a^{13} + \frac{8373478925809533940534947718802773993868}{276248960266657575494685372195922746059267} a^{12} + \frac{136071231065739603175482383234441652836514}{276248960266657575494685372195922746059267} a^{11} - \frac{130839499445356603814820265083194449070931}{276248960266657575494685372195922746059267} a^{10} + \frac{97325609819606778653968903353297603201838}{276248960266657575494685372195922746059267} a^{9} - \frac{88657979988158372280863204852537817729354}{276248960266657575494685372195922746059267} a^{8} - \frac{2857492960402745451323648935792482385551}{276248960266657575494685372195922746059267} a^{7} + \frac{8840363361253377138133006869141507394868}{276248960266657575494685372195922746059267} a^{6} - \frac{52095461050954639163327317866065934251485}{276248960266657575494685372195922746059267} a^{5} + \frac{134384996912850782621500522554602504285559}{276248960266657575494685372195922746059267} a^{4} - \frac{132349794044341215870954439955226777989811}{276248960266657575494685372195922746059267} a^{3} + \frac{136876673469262378655053511368773674375586}{276248960266657575494685372195922746059267} a^{2} + \frac{112119690374223991240610795759346850154379}{276248960266657575494685372195922746059267} a + \frac{105798236941134950286741005438853317057886}{276248960266657575494685372195922746059267}$
Class group and class number
$C_{5}$, which has order $5$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 93963096289.74506 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 15 |
| The 15 conjugacy class representatives for $C_{15}$ |
| Character table for $C_{15}$ |
Intermediate fields
| 3.3.961.1, 5.5.13521270961.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{3}$ | $15$ | $15$ | $15$ | R | ${\href{/LocalNumberField/13.3.0.1}{3} }^{5}$ | $15$ | $15$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{3}$ | R | $15$ | $15$ | $15$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{3}$ | $15$ | $15$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.15.12.3 | $x^{15} - 22 x^{10} + 121 x^{5} - 11979$ | $5$ | $3$ | $12$ | $C_{15}$ | $[\ ]_{5}^{3}$ |
| $31$ | 31.15.14.4 | $x^{15} + 10633$ | $15$ | $1$ | $14$ | $C_{15}$ | $[\ ]_{15}$ |