Normalized defining polynomial
\( x^{15} - x^{14} - 138 x^{13} + 261 x^{12} + 5937 x^{11} - 14853 x^{10} - 78278 x^{9} + 180337 x^{8} + 345794 x^{7} - 482477 x^{6} - 731294 x^{5} + 270601 x^{4} + 509073 x^{3} + 18479 x^{2} - 93070 x - 15313 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2375614325883809574306005975647441=11^{12}\cdot 31^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $167.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(341=11\cdot 31\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{341}(1,·)$, $\chi_{341}(258,·)$, $\chi_{341}(67,·)$, $\chi_{341}(69,·)$, $\chi_{341}(70,·)$, $\chi_{341}(257,·)$, $\chi_{341}(328,·)$, $\chi_{341}(169,·)$, $\chi_{341}(295,·)$, $\chi_{341}(236,·)$, $\chi_{341}(113,·)$, $\chi_{341}(126,·)$, $\chi_{341}(56,·)$, $\chi_{341}(152,·)$, $\chi_{341}(190,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{4} - \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{87} a^{10} - \frac{11}{87} a^{9} - \frac{5}{87} a^{8} - \frac{7}{87} a^{7} - \frac{17}{87} a^{6} - \frac{25}{87} a^{5} + \frac{1}{3} a^{4} + \frac{14}{87} a^{3} - \frac{5}{29} a^{2} - \frac{6}{29} a - \frac{4}{87}$, $\frac{1}{87} a^{11} - \frac{10}{87} a^{9} + \frac{25}{87} a^{8} + \frac{22}{87} a^{7} - \frac{3}{29} a^{6} + \frac{5}{29} a^{5} + \frac{43}{87} a^{4} - \frac{35}{87} a^{3} - \frac{38}{87} a^{2} + \frac{1}{87} a + \frac{14}{87}$, $\frac{1}{87} a^{12} + \frac{2}{87} a^{9} - \frac{28}{87} a^{8} + \frac{8}{87} a^{7} + \frac{19}{87} a^{6} - \frac{11}{29} a^{5} - \frac{2}{29} a^{4} + \frac{5}{29} a^{3} + \frac{25}{87} a^{2} + \frac{8}{87} a - \frac{40}{87}$, $\frac{1}{666507} a^{13} + \frac{3077}{666507} a^{12} - \frac{340}{222169} a^{11} - \frac{88}{22983} a^{10} + \frac{49727}{666507} a^{9} - \frac{172306}{666507} a^{8} - \frac{3227}{222169} a^{7} + \frac{182716}{666507} a^{6} - \frac{91}{14181} a^{5} - \frac{7700}{666507} a^{4} + \frac{87536}{666507} a^{3} + \frac{159658}{666507} a^{2} - \frac{110949}{222169} a - \frac{88777}{666507}$, $\frac{1}{141163374400471833523192083} a^{14} + \frac{16389405107572541174}{47054458133490611174397361} a^{13} - \frac{236009435283667550226616}{141163374400471833523192083} a^{12} - \frac{574916601490596125745785}{141163374400471833523192083} a^{11} + \frac{266644659914913867474943}{47054458133490611174397361} a^{10} + \frac{11551205349873240688330426}{141163374400471833523192083} a^{9} + \frac{67835534577058637875957418}{141163374400471833523192083} a^{8} + \frac{27884755724379009201567070}{141163374400471833523192083} a^{7} - \frac{65203592787771189685454335}{141163374400471833523192083} a^{6} + \frac{32925131617789059093772136}{141163374400471833523192083} a^{5} + \frac{3652290779744341695237167}{47054458133490611174397361} a^{4} + \frac{239098461630818724083009}{47054458133490611174397361} a^{3} - \frac{3081381242433137096809028}{141163374400471833523192083} a^{2} - \frac{64540105774182128513490325}{141163374400471833523192083} a - \frac{3715306991839965323515441}{141163374400471833523192083}$
Class group and class number
$C_{5}$, which has order $5$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 228738890590.5845 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 15 |
| The 15 conjugacy class representatives for $C_{15}$ |
| Character table for $C_{15}$ |
Intermediate fields
| 3.3.961.1, 5.5.13521270961.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/3.3.0.1}{3} }^{5}$ | $15$ | $15$ | R | $15$ | $15$ | $15$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/29.1.0.1}{1} }^{15}$ | R | $15$ | $15$ | $15$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{15}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{5}$ | $15$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.15.12.2 | $x^{15} - 121 x^{5} + 3993$ | $5$ | $3$ | $12$ | $C_{15}$ | $[\ ]_{5}^{3}$ |
| $31$ | 31.15.14.7 | $x^{15} - 3647119$ | $15$ | $1$ | $14$ | $C_{15}$ | $[\ ]_{15}$ |