Normalized defining polynomial
\( x^{15} - x^{14} - 138 x^{13} - 80 x^{12} + 6278 x^{11} + 13450 x^{10} - 98056 x^{9} - 360148 x^{8} + 54921 x^{7} + 1300271 x^{6} + 477210 x^{5} - 1783924 x^{4} - 627480 x^{3} + 972256 x^{2} + 154496 x - 141824 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2375614325883809574306005975647441=11^{12}\cdot 31^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $167.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(341=11\cdot 31\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{341}(1,·)$, $\chi_{341}(67,·)$, $\chi_{341}(324,·)$, $\chi_{341}(71,·)$, $\chi_{341}(202,·)$, $\chi_{341}(267,·)$, $\chi_{341}(289,·)$, $\chi_{341}(157,·)$, $\chi_{341}(20,·)$, $\chi_{341}(97,·)$, $\chi_{341}(235,·)$, $\chi_{341}(56,·)$, $\chi_{341}(225,·)$, $\chi_{341}(59,·)$, $\chi_{341}(317,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{8} a^{5} - \frac{1}{8} a^{3}$, $\frac{1}{16} a^{6} - \frac{1}{16} a^{5} - \frac{1}{16} a^{4} - \frac{3}{16} a^{3} + \frac{1}{4} a$, $\frac{1}{32} a^{7} - \frac{1}{16} a^{5} - \frac{3}{32} a^{3} - \frac{3}{8} a - \frac{1}{2}$, $\frac{1}{128} a^{8} + \frac{1}{64} a^{6} + \frac{1}{128} a^{4} - \frac{1}{4} a^{3} - \frac{1}{32} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{256} a^{9} - \frac{1}{256} a^{8} + \frac{1}{128} a^{7} - \frac{1}{128} a^{6} + \frac{1}{256} a^{5} - \frac{1}{256} a^{4} + \frac{7}{64} a^{3} - \frac{15}{64} a^{2} - \frac{1}{8} a + \frac{1}{4}$, $\frac{1}{512} a^{10} - \frac{1}{512} a^{9} - \frac{1}{256} a^{7} + \frac{13}{512} a^{6} - \frac{17}{512} a^{5} + \frac{5}{256} a^{4} - \frac{11}{128} a^{3} - \frac{3}{64} a^{2} - \frac{1}{8} a - \frac{1}{4}$, $\frac{1}{1024} a^{11} - \frac{1}{1024} a^{9} - \frac{1}{512} a^{8} + \frac{11}{1024} a^{7} - \frac{1}{256} a^{6} + \frac{57}{1024} a^{5} + \frac{15}{512} a^{4} + \frac{63}{256} a^{3} - \frac{19}{128} a^{2} - \frac{1}{16} a + \frac{3}{8}$, $\frac{1}{4096} a^{12} - \frac{1}{2048} a^{11} + \frac{1}{4096} a^{10} - \frac{1}{2048} a^{9} - \frac{9}{4096} a^{8} - \frac{15}{2048} a^{7} + \frac{107}{4096} a^{6} + \frac{37}{2048} a^{5} + \frac{63}{1024} a^{4} + \frac{107}{512} a^{3} - \frac{27}{128} a^{2} - \frac{15}{32} a - \frac{3}{8}$, $\frac{1}{16384} a^{13} - \frac{1}{16384} a^{12} + \frac{7}{16384} a^{11} + \frac{15}{16384} a^{10} - \frac{19}{16384} a^{9} - \frac{39}{16384} a^{8} + \frac{37}{16384} a^{7} + \frac{133}{16384} a^{6} + \frac{263}{8192} a^{5} - \frac{67}{4096} a^{4} + \frac{43}{2048} a^{3} + \frac{85}{512} a^{2} - \frac{47}{128} a - \frac{15}{32}$, $\frac{1}{5637818623197184} a^{14} - \frac{19765035243}{2818909311598592} a^{13} - \frac{91428392447}{1409454655799296} a^{12} + \frac{459242087223}{1409454655799296} a^{11} - \frac{2621394266115}{2818909311598592} a^{10} - \frac{1019217603839}{704727327899648} a^{9} + \frac{521378543325}{352363663949824} a^{8} - \frac{6924064513625}{1409454655799296} a^{7} + \frac{125852046007869}{5637818623197184} a^{6} + \frac{80292896350071}{2818909311598592} a^{5} - \frac{75586316127675}{1409454655799296} a^{4} - \frac{19830503956483}{704727327899648} a^{3} - \frac{20169071449817}{176181831974912} a^{2} + \frac{6886292425167}{44045457993728} a - \frac{3380923733569}{11011364498432}$
Class group and class number
$C_{5}$, which has order $5$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2170143402898142.5 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 15 |
| The 15 conjugacy class representatives for $C_{15}$ |
| Character table for $C_{15}$ |
Intermediate fields
| 3.3.961.1, 5.5.13521270961.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.1.0.1}{1} }^{15}$ | $15$ | $15$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{5}$ | R | $15$ | $15$ | $15$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{3}$ | R | $15$ | $15$ | $15$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{3}$ | $15$ | $15$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.15.12.4 | $x^{15} + 99 x^{10} + 3146 x^{5} + 35937$ | $5$ | $3$ | $12$ | $C_{15}$ | $[\ ]_{5}^{3}$ |
| $31$ | 31.15.14.13 | $x^{15} - 429079903231$ | $15$ | $1$ | $14$ | $C_{15}$ | $[\ ]_{15}$ |