Normalized defining polynomial
\( x^{15} - 11275 x^{13} - 124025 x^{12} + 45081960 x^{11} + 891723965 x^{10} - 76578988200 x^{9} - 2216106307965 x^{8} + 44485161759555 x^{7} + 2079870790777010 x^{6} + 8195553887899983 x^{5} - 457716480374582000 x^{4} - 5640651315561778120 x^{3} + 1700941616424112590 x^{2} + 316610688507343605265 x + 1257096395450004601701 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2368379989452191012928309708195070432434082031250000000000=2^{10}\cdot 3^{5}\cdot 5^{25}\cdot 11^{13}\cdot 41^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $6682.88$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{33} a^{5} - \frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{99} a^{6} - \frac{1}{99} a^{5} - \frac{1}{9} a^{4} - \frac{2}{9} a^{3} + \frac{2}{9} a^{2} - \frac{2}{9} a + \frac{1}{3}$, $\frac{1}{99} a^{7} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{9} a + \frac{1}{3}$, $\frac{1}{297} a^{8} - \frac{1}{297} a^{7} + \frac{1}{99} a^{5} + \frac{4}{9} a^{3} - \frac{2}{27} a^{2} + \frac{5}{27} a - \frac{1}{9}$, $\frac{1}{891} a^{9} + \frac{1}{891} a^{8} - \frac{2}{891} a^{7} + \frac{1}{297} a^{6} - \frac{1}{297} a^{5} - \frac{2}{27} a^{4} + \frac{22}{81} a^{3} - \frac{35}{81} a^{2} - \frac{29}{81} a - \frac{11}{27}$, $\frac{1}{401841} a^{10} + \frac{2}{891} a^{7} + \frac{1}{297} a^{6} - \frac{1}{99} a^{5} + \frac{1}{81} a^{4} - \frac{4}{27} a^{3} + \frac{2}{9} a^{2} + \frac{20}{81} a - \frac{10}{27}$, $\frac{1}{401841} a^{11} - \frac{1}{891} a^{8} - \frac{1}{297} a^{7} - \frac{7}{891} a^{5} + \frac{2}{27} a^{4} - \frac{1}{9} a^{3} - \frac{37}{81} a^{2} + \frac{4}{9} a + \frac{1}{9}$, $\frac{1}{3616569} a^{12} + \frac{1}{1205523} a^{11} - \frac{1}{3616569} a^{10} + \frac{2}{8019} a^{9} - \frac{20}{8019} a^{7} + \frac{35}{8019} a^{6} - \frac{1}{891} a^{5} + \frac{8}{729} a^{4} + \frac{113}{729} a^{3} + \frac{100}{243} a^{2} + \frac{277}{729} a - \frac{8}{243}$, $\frac{1}{32549121} a^{13} - \frac{4}{32549121} a^{12} - \frac{4}{32549121} a^{11} + \frac{2}{3616569} a^{10} + \frac{40}{72171} a^{9} + \frac{16}{72171} a^{8} + \frac{175}{72171} a^{7} + \frac{313}{72171} a^{6} + \frac{673}{72171} a^{5} - \frac{80}{2187} a^{4} - \frac{1976}{6561} a^{3} + \frac{2263}{6561} a^{2} + \frac{602}{6561} a + \frac{326}{2187}$, $\frac{1}{6961188146034467578507678257806307242738542888463295205232414327362874850413865311326045011} a^{14} - \frac{47095561692852559482949803614585173107348068285480408680301760219391309005615540638}{6961188146034467578507678257806307242738542888463295205232414327362874850413865311326045011} a^{13} - \frac{280440065729300771345218720989011143659098254920228091360426995044999307954084919009}{2320396048678155859502559419268769080912847629487765068410804775787624950137955103775348337} a^{12} + \frac{6421001331437397772825818592353034708296327438963049451852686517526106931732371599682}{6961188146034467578507678257806307242738542888463295205232414327362874850413865311326045011} a^{11} + \frac{608424053702074310705333172375039239706329820604697878739362922622445307255123223203}{632835286003133416227970750709664294794412989860299564112037666123897713673987755575095001} a^{10} - \frac{997674267262853873414929423630783025112969568150490501099038884916057178675877684880}{5145002325228726961203014233411904835726934876913004586276728992877217184341363866464187} a^{9} + \frac{776528680149756968920497649085844663245043431401568829359095947489246710828179046638}{1715000775076242320401004744470634945242311625637668195425576330959072394780454622154729} a^{8} - \frac{10187108143124978224812649767802956286303008163737688254550114149279901157952300014623}{5145002325228726961203014233411904835726934876913004586276728992877217184341363866464187} a^{7} + \frac{54620449709935957417094930821484195624093665739522575947938271162771042701220804119}{467727484111702451018455839401082257793357716083000416934248090261565198576487624224017} a^{6} + \frac{133901936340258991629569835730985013055765802158337977998571865683570055815870365410252}{15435006975686180883609042700235714507180804630739013758830186978631651553024091599392561} a^{5} - \frac{24653175506193754732525100005353002908520326898421688081666325260368540102435845783474}{1403182452335107353055367518203246773380073148249001250802744270784695595729462872672051} a^{4} - \frac{216109863404929038922459505644714362571471532257997400444345106319141359199286281482991}{467727484111702451018455839401082257793357716083000416934248090261565198576487624224017} a^{3} - \frac{409189364505354960241086660213987096621072462892697254237602399799478946071561938600061}{1403182452335107353055367518203246773380073148249001250802744270784695595729462872672051} a^{2} - \frac{691748021247226002585062908387179999676020942514416458266033310706742880328648602172458}{1403182452335107353055367518203246773380073148249001250802744270784695595729462872672051} a - \frac{10376295138364685186964483582640777160774976058123808187792225020266523915699345204858}{467727484111702451018455839401082257793357716083000416934248090261565198576487624224017}$
Class group and class number
$C_{5}\times C_{5}\times C_{55}$, which has order $1375$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 42948975476702135000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_5\times S_3$ (as 15T4):
| A solvable group of order 30 |
| The 15 conjugacy class representatives for $S_3 \times C_5$ |
| Character table for $S_3 \times C_5$ |
Intermediate fields
| 3.3.27060.1, 5.5.16160924531640625.6 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{5}$ | $15$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }$ | $15$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }$ | R | $15$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{5}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.15.10.1 | $x^{15} + 8 x^{6} + 32$ | $3$ | $5$ | $10$ | $S_3 \times C_5$ | $[\ ]_{3}^{10}$ |
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $5$ | 5.5.8.4 | $x^{5} - 5 x^{4} + 55$ | $5$ | $1$ | $8$ | $C_5$ | $[2]$ |
| 5.10.17.27 | $x^{10} - 10 x^{8} + 10$ | $10$ | $1$ | $17$ | $C_{10}$ | $[2]_{2}$ | |
| $11$ | 11.5.4.1 | $x^{5} + 297$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.10.9.9 | $x^{10} + 297$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |
| $41$ | 41.5.4.3 | $x^{5} - 1476$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 41.10.9.2 | $x^{10} - 1476$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |