Normalized defining polynomial
\( x^{15} - 2 x^{14} - 105 x^{13} + 334 x^{12} + 3348 x^{11} - 14720 x^{10} - 27588 x^{9} + 198291 x^{8} - 60296 x^{7} - 857980 x^{6} + 806127 x^{5} + 1390892 x^{4} - 1587370 x^{3} - 853079 x^{2} + 749403 x + 261871 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2262214114345307242786511343301609=13^{10}\cdot 71^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $167.35$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 71$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(923=13\cdot 71\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{923}(640,·)$, $\chi_{923}(1,·)$, $\chi_{923}(835,·)$, $\chi_{923}(196,·)$, $\chi_{923}(711,·)$, $\chi_{923}(360,·)$, $\chi_{923}(412,·)$, $\chi_{923}(906,·)$, $\chi_{923}(289,·)$, $\chi_{923}(625,·)$, $\chi_{923}(451,·)$, $\chi_{923}(341,·)$, $\chi_{923}(664,·)$, $\chi_{923}(380,·)$, $\chi_{923}(573,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{23} a^{12} - \frac{2}{23} a^{11} - \frac{1}{23} a^{10} + \frac{10}{23} a^{9} + \frac{3}{23} a^{8} + \frac{6}{23} a^{7} - \frac{8}{23} a^{6} + \frac{8}{23} a^{5} + \frac{1}{23} a^{3} - \frac{8}{23} a^{2} + \frac{2}{23} a - \frac{7}{23}$, $\frac{1}{23} a^{13} - \frac{5}{23} a^{11} + \frac{8}{23} a^{10} - \frac{11}{23} a^{8} + \frac{4}{23} a^{7} - \frac{8}{23} a^{6} - \frac{7}{23} a^{5} + \frac{1}{23} a^{4} - \frac{6}{23} a^{3} + \frac{9}{23} a^{2} - \frac{3}{23} a + \frac{9}{23}$, $\frac{1}{317454597905207700300547750145941} a^{14} + \frac{1290880280068427372073341482233}{317454597905207700300547750145941} a^{13} + \frac{3211508902673159521597946964608}{317454597905207700300547750145941} a^{12} - \frac{79875508491409509489203780821744}{317454597905207700300547750145941} a^{11} - \frac{97199526350326365414433396630242}{317454597905207700300547750145941} a^{10} + \frac{125260240718843398357213588738988}{317454597905207700300547750145941} a^{9} + \frac{106744168370214074488306793605243}{317454597905207700300547750145941} a^{8} - \frac{31586720878744502956075381250931}{317454597905207700300547750145941} a^{7} - \frac{142797281370666712422644870424017}{317454597905207700300547750145941} a^{6} - \frac{39208318452717945309173236643536}{317454597905207700300547750145941} a^{5} + \frac{139821539750802904365169360626771}{317454597905207700300547750145941} a^{4} + \frac{48105510983560787548627523691326}{317454597905207700300547750145941} a^{3} + \frac{76495363702660824519671725412815}{317454597905207700300547750145941} a^{2} + \frac{42063749507244493622089124535285}{317454597905207700300547750145941} a - \frac{29606685315315093723721659300508}{317454597905207700300547750145941}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 444156020841.87354 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 15 |
| The 15 conjugacy class representatives for $C_{15}$ |
| Character table for $C_{15}$ |
Intermediate fields
| 3.3.169.1, 5.5.25411681.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $15$ | $15$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{3}$ | $15$ | $15$ | R | $15$ | $15$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{5}$ | $15$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{5}$ | $15$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{3}$ | $15$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.15.10.1 | $x^{15} + 79092 x^{6} - 228488 x^{3} + 80199288$ | $3$ | $5$ | $10$ | $C_{15}$ | $[\ ]_{3}^{5}$ |
| $71$ | 71.15.12.1 | $x^{15} + 710 x^{10} + 95779 x^{5} + 11453152$ | $5$ | $3$ | $12$ | $C_{15}$ | $[\ ]_{5}^{3}$ |