Normalized defining polynomial
\( x^{15} - 4 x^{14} - 254 x^{13} + 720 x^{12} + 24835 x^{11} - 39488 x^{10} - 1194256 x^{9} + 471780 x^{8} + 29116535 x^{7} + 18527692 x^{6} - 324217686 x^{5} - 460280152 x^{4} + 1108467941 x^{3} + 2000962040 x^{2} - 407455644 x - 1153284124 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2250056984849498589655164413542400000=2^{34}\cdot 5^{5}\cdot 37^{5}\cdot 61^{2}\cdot 467^{2}\cdot 863^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $265.14$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 37, 61, 467, 863$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{4} a^{5} + \frac{1}{4} a^{3}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} + \frac{1}{4} a^{3}$, $\frac{1}{8} a^{11} - \frac{1}{4} a^{7} - \frac{3}{8} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{8} a^{12} - \frac{1}{4} a^{7} + \frac{3}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{208} a^{13} - \frac{3}{104} a^{12} - \frac{9}{208} a^{11} + \frac{1}{13} a^{10} - \frac{9}{104} a^{9} - \frac{3}{104} a^{7} - \frac{1}{52} a^{6} - \frac{19}{208} a^{5} - \frac{11}{104} a^{4} + \frac{63}{208} a^{3} + \frac{21}{52} a^{2} - \frac{23}{52} a + \frac{15}{52}$, $\frac{1}{20565218162186111812060872365001235481339936441817232} a^{14} + \frac{42716337109594201340947171820146428217512986331589}{20565218162186111812060872365001235481339936441817232} a^{13} - \frac{709636218915228130412019384095421912116664503608795}{20565218162186111812060872365001235481339936441817232} a^{12} - \frac{1117009262366834505803770957351570726566721983675923}{20565218162186111812060872365001235481339936441817232} a^{11} - \frac{1109098096097940393543315591875194266019661188864163}{10282609081093055906030436182500617740669968220908616} a^{10} - \frac{1027425154884059497740238129310758043367533286848683}{10282609081093055906030436182500617740669968220908616} a^{9} - \frac{632088346931936296785893273082641821812074212665841}{10282609081093055906030436182500617740669968220908616} a^{8} + \frac{210891459266895683343565697018016426441820981692769}{10282609081093055906030436182500617740669968220908616} a^{7} - \frac{1377119211456449215545472277081481078051883627006707}{20565218162186111812060872365001235481339936441817232} a^{6} - \frac{1681385387460770848222047987032446643536882689998815}{20565218162186111812060872365001235481339936441817232} a^{5} + \frac{2372681490710488478362519955214294276893252887246641}{20565218162186111812060872365001235481339936441817232} a^{4} + \frac{9295202030288574344528710172013633679587978974401017}{20565218162186111812060872365001235481339936441817232} a^{3} - \frac{210217775271792008957962243095501865618742892418196}{1285326135136631988253804522812577217583746027613577} a^{2} + \frac{1088190305657457286326475984124530578701756802710503}{2570652270273263976507609045625154435167492055227154} a - \frac{794210612996178219781329605573706586970061348706283}{5141304540546527953015218091250308870334984110454308}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 126266111719000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 48000 |
| The 65 conjugacy class representatives for [F(5)^3]S(3)=F(5)wrS(3) are not computed |
| Character table for [F(5)^3]S(3)=F(5)wrS(3) is not computed |
Intermediate fields
| 3.3.148.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 30 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | $15$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{5}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/41.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.12.32.291 | $x^{12} + 4 x^{11} + 2 x^{10} + 4 x^{9} - 4 x^{8} - 4 x^{6} + 8 x^{5} + 4 x^{4} + 4 x^{2} + 8 x + 2$ | $12$ | $1$ | $32$ | 12T98 | $[2, 8/3, 8/3, 11/3, 11/3]_{3}^{2}$ | |
| $5$ | 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 5.5.5.4 | $x^{5} + 10 x + 5$ | $5$ | $1$ | $5$ | $F_5$ | $[5/4]_{4}$ | |
| 5.8.0.1 | $x^{8} + x^{2} - 2 x + 3$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 37 | Data not computed | ||||||
| $61$ | $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 61.2.1.2 | $x^{2} + 122$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 61.2.1.2 | $x^{2} + 122$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 61.10.0.1 | $x^{10} + x^{2} - x + 10$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| 467 | Data not computed | ||||||
| 863 | Data not computed | ||||||