Normalized defining polynomial
\( x^{15} - 2775 x^{13} + 3080250 x^{11} - 1319790 x^{10} - 1741196875 x^{9} + 2441611500 x^{8} + 527107781250 x^{7} - 1580943446250 x^{6} - 81279655885875 x^{5} + 417820767937500 x^{4} + 5027100198340625 x^{3} - 38648421034218750 x^{2} - 2944424066062500 x + 354600210318775000 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(224153655922799764834770035947265625000000000000000000=2^{18}\cdot 3^{20}\cdot 5^{28}\cdot 37^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $3603.32$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{4} a^{3} - \frac{1}{4} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{4} a^{4} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{5920} a^{5} + \frac{3}{32} a^{3} - \frac{1}{4} a^{2} + \frac{5}{32} a + \frac{3}{16}$, $\frac{1}{5920} a^{6} + \frac{3}{32} a^{4} - \frac{3}{32} a^{2} + \frac{7}{16} a - \frac{1}{2}$, $\frac{1}{5920} a^{7} - \frac{1}{8} a^{3} + \frac{3}{16} a^{2} - \frac{7}{32} a - \frac{1}{16}$, $\frac{1}{118400} a^{8} - \frac{1}{23680} a^{7} - \frac{1}{23680} a^{5} - \frac{1}{32} a^{4} + \frac{51}{640} a^{3} + \frac{31}{128} a^{2} - \frac{1}{4} a + \frac{11}{32}$, $\frac{1}{118400} a^{9} - \frac{1}{23680} a^{7} - \frac{1}{23680} a^{6} - \frac{1}{23680} a^{5} - \frac{49}{640} a^{4} - \frac{3}{64} a^{3} - \frac{45}{128} a^{2} - \frac{1}{16} a - \frac{15}{32}$, $\frac{1}{443862656000} a^{10} - \frac{1}{239925760} a^{8} + \frac{7}{2593792} a^{6} - \frac{19781}{599814400} a^{5} - \frac{925}{1296896} a^{4} + \frac{19781}{648448} a^{3} + \frac{171125}{2593792} a^{2} + \frac{231203}{648448} a + \frac{113029}{648448}$, $\frac{1}{443862656000} a^{11} - \frac{1}{239925760} a^{9} + \frac{7}{2593792} a^{7} - \frac{19781}{599814400} a^{6} - \frac{9013}{239925760} a^{5} + \frac{19781}{648448} a^{4} - \frac{153099}{2593792} a^{3} - \frac{93021}{648448} a^{2} + \frac{194085}{648448} a - \frac{1}{4}$, $\frac{1}{2219313280000} a^{12} - \frac{13}{12968960} a^{8} + \frac{182859}{2999072000} a^{7} + \frac{271}{23992576} a^{6} - \frac{2393}{119962880} a^{5} + \frac{79229}{2593792} a^{4} + \frac{21537}{648448} a^{3} + \frac{254843}{6484480} a^{2} - \frac{106069}{324224} a + \frac{38445}{324224}$, $\frac{1}{11001384492047360000} a^{13} + \frac{24379}{297334716001280000} a^{12} - \frac{13}{59466943200256000} a^{11} + \frac{1389}{2973347160012800} a^{10} + \frac{13}{64288587243520} a^{9} + \frac{181872322741}{59466943200256000} a^{8} + \frac{133340387669}{1607214681088000} a^{7} - \frac{808805249}{10045091756800} a^{6} + \frac{1662317719}{64288587243520} a^{5} - \frac{15850942537}{347505876992} a^{4} - \frac{5597079186743}{64288587243520} a^{3} + \frac{161240069377}{868764692480} a^{2} - \frac{25719643377}{86876469248} a - \frac{12242658439}{43438234624}$, $\frac{1}{55006922460236800000} a^{14} - \frac{7}{148667358000640000} a^{12} - \frac{33957}{59466943200256000} a^{11} + \frac{77}{1607214681088000} a^{10} - \frac{405712265557}{148667358000640000} a^{9} - \frac{21}{868764692480} a^{8} - \frac{25653750399}{1607214681088000} a^{7} - \frac{11685638097}{321442936217600} a^{6} + \frac{7229514567}{160721468108800} a^{5} - \frac{1005095307413}{40180367027200} a^{4} - \frac{3350622481}{347505876992} a^{3} - \frac{335299110897}{868764692480} a^{2} - \frac{28994254427}{86876469248} a + \frac{19138909881}{43438234624}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 47821760164600000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_5^2:(C_3:C_4)$ (as 15T17):
| A solvable group of order 300 |
| The 8 conjugacy class representatives for $(C_5^2 : C_3):C_4$ |
| Character table for $(C_5^2 : C_3):C_4$ |
Intermediate fields
| 3.3.1620.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 15 sibling: | data not computed |
| Degree 25 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/41.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.12.16.18 | $x^{12} + x^{10} + 6 x^{8} - 3 x^{6} + 6 x^{4} + x^{2} - 3$ | $6$ | $2$ | $16$ | $C_3 : C_4$ | $[2]_{3}^{2}$ | |
| $3$ | 3.3.4.4 | $x^{3} + 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $S_3$ | $[2]^{2}$ |
| 3.12.16.30 | $x^{12} + 93 x^{11} + 351 x^{10} + 3 x^{9} + 126 x^{8} - 297 x^{7} + 171 x^{6} + 243 x^{5} - 324 x^{4} - 54 x^{3} + 162 x^{2} - 243 x + 324$ | $3$ | $4$ | $16$ | $C_3 : C_4$ | $[2]^{4}$ | |
| $5$ | 5.5.9.5 | $x^{5} + 105$ | $5$ | $1$ | $9$ | $F_5$ | $[9/4]_{4}$ |
| 5.10.19.7 | $x^{10} - 20 x^{5} + 105$ | $10$ | $1$ | $19$ | $C_5^2 : C_4$ | $[7/4, 9/4]_{4}$ | |
| 37 | Data not computed | ||||||