Normalized defining polynomial
\( x^{15} - 2 x^{14} - 113 x^{13} + 208 x^{12} + 4834 x^{11} - 8166 x^{10} - 98676 x^{9} + 150883 x^{8} + 1004274 x^{7} - 1336418 x^{6} - 4903173 x^{5} + 5161658 x^{4} + 10129434 x^{3} - 6538649 x^{2} - 6747207 x + 1201663 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2238775636295572340244024331321=11^{12}\cdot 61^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $105.52$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(671=11\cdot 61\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{671}(1,·)$, $\chi_{671}(291,·)$, $\chi_{671}(196,·)$, $\chi_{671}(257,·)$, $\chi_{671}(169,·)$, $\chi_{671}(135,·)$, $\chi_{671}(108,·)$, $\chi_{671}(306,·)$, $\chi_{671}(47,·)$, $\chi_{671}(562,·)$, $\chi_{671}(367,·)$, $\chi_{671}(245,·)$, $\chi_{671}(489,·)$, $\chi_{671}(474,·)$, $\chi_{671}(379,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{7} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{69} a^{12} - \frac{2}{69} a^{10} - \frac{14}{69} a^{9} + \frac{7}{69} a^{8} - \frac{8}{23} a^{7} + \frac{1}{23} a^{6} + \frac{28}{69} a^{5} - \frac{4}{23} a^{4} + \frac{4}{23} a^{3} + \frac{7}{69} a^{2} + \frac{4}{69} a + \frac{13}{69}$, $\frac{1}{16629} a^{13} - \frac{110}{16629} a^{12} - \frac{890}{5543} a^{11} - \frac{813}{5543} a^{10} + \frac{2950}{16629} a^{9} + \frac{2978}{16629} a^{8} - \frac{1313}{16629} a^{7} + \frac{2573}{16629} a^{6} + \frac{1507}{5543} a^{5} + \frac{7289}{16629} a^{4} + \frac{6967}{16629} a^{3} - \frac{5987}{16629} a^{2} + \frac{379}{5543} a - \frac{7525}{16629}$, $\frac{1}{75922359385401101032090624362953435673} a^{14} + \frac{743850357750581821424903734150455}{25307453128467033677363541454317811891} a^{13} - \frac{121795379357446499690102489835832517}{25307453128467033677363541454317811891} a^{12} + \frac{1406423361540643322961042484712992856}{25307453128467033677363541454317811891} a^{11} + \frac{3557113998329059461538526016415984972}{25307453128467033677363541454317811891} a^{10} - \frac{3571047896060997521718765802937933873}{25307453128467033677363541454317811891} a^{9} + \frac{8625230672575051315349227652643554477}{25307453128467033677363541454317811891} a^{8} - \frac{242477654869727747397734979329178684}{1100324049063784072928849628448600517} a^{7} - \frac{21560357853200825162303785123756517717}{75922359385401101032090624362953435673} a^{6} + \frac{35160862653988296955893253948339950884}{75922359385401101032090624362953435673} a^{5} + \frac{25486169004637888695379388081235933658}{75922359385401101032090624362953435673} a^{4} - \frac{21965960312205191732603471417705484001}{75922359385401101032090624362953435673} a^{3} - \frac{9824414387955724869203069913638830181}{75922359385401101032090624362953435673} a^{2} + \frac{117768998841020025448197739360822134}{284353405937831839071500465778851819} a - \frac{32766217821436901207004713524356834707}{75922359385401101032090624362953435673}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 31742014185.46094 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 15 |
| The 15 conjugacy class representatives for $C_{15}$ |
| Character table for $C_{15}$ |
Intermediate fields
| 3.3.3721.1, \(\Q(\zeta_{11})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $15$ | ${\href{/LocalNumberField/3.5.0.1}{5} }^{3}$ | $15$ | $15$ | R | $15$ | $15$ | $15$ | ${\href{/LocalNumberField/23.1.0.1}{1} }^{15}$ | $15$ | $15$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{5}$ | $15$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{3}$ | $15$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| $61$ | 61.15.10.1 | $x^{15} + 4085658 x^{6} - 13845841 x^{3} + 182432801016$ | $3$ | $5$ | $10$ | $C_{15}$ | $[\ ]_{3}^{5}$ |