Normalized defining polynomial
\( x^{15} - 564 x^{13} - 1318 x^{12} + 106245 x^{11} + 437550 x^{10} - 8513738 x^{9} - 51480954 x^{8} + 250121274 x^{7} + 2496923998 x^{6} + 1781931375 x^{5} - 37671758364 x^{4} - 152139299988 x^{3} - 246875970600 x^{2} - 177750698832 x - 44516048032 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2231784480979129609810320595530550951774761=3^{20}\cdot 401^{7}\cdot 19593331^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $665.65$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 401, 19593331$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{8} - \frac{1}{2} a^{5} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{13} - \frac{1}{4} a^{10} + \frac{1}{8} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{3}{8} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{177946531088217032930927569037646403166594090780544239630091632} a^{14} + \frac{1543429463133703546912612072255605729812580765027941653593985}{44486632772054258232731892259411600791648522695136059907522908} a^{13} - \frac{3359900032454051207408471939305795607240819374092800797654337}{44486632772054258232731892259411600791648522695136059907522908} a^{12} + \frac{8854948843637985375234465670258876578536509125776966745217053}{88973265544108516465463784518823201583297045390272119815045816} a^{11} + \frac{3292497155836643052134457038856137574334654851058431970577477}{177946531088217032930927569037646403166594090780544239630091632} a^{10} + \frac{19235117282736368897856529403254974157526038849071362026960477}{88973265544108516465463784518823201583297045390272119815045816} a^{9} + \frac{6941270345657088881825940914568861314150928528088421413676867}{88973265544108516465463784518823201583297045390272119815045816} a^{8} + \frac{17926980777827499610715501234687956036225797708784972590372719}{88973265544108516465463784518823201583297045390272119815045816} a^{7} - \frac{15183931096901655643019247791331362539935600141201188882877179}{88973265544108516465463784518823201583297045390272119815045816} a^{6} + \frac{25981977045838856045760911578028553898326917937927683561885923}{88973265544108516465463784518823201583297045390272119815045816} a^{5} + \frac{18920973748260140110998454768414761972520599807148252014293927}{177946531088217032930927569037646403166594090780544239630091632} a^{4} + \frac{253342150210844522595879838097017605341524310229147930398403}{11121658193013564558182973064852900197912130673784014976880727} a^{3} - \frac{19544380990919743931198704214554605105394176459364266749868271}{44486632772054258232731892259411600791648522695136059907522908} a^{2} - \frac{5355328523971455892418245251887706926694102944477154755605339}{11121658193013564558182973064852900197912130673784014976880727} a - \frac{1077849787239094577471586211530584454117432041432469709439655}{11121658193013564558182973064852900197912130673784014976880727}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 35897750262200000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2430 |
| The 45 conjugacy class representatives for 1/2[3^5:2]D(5) |
| Character table for 1/2[3^5:2]D(5) is not computed |
Intermediate fields
| 5.5.160801.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 15 siblings: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 45 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{3}$ | R | ${\href{/LocalNumberField/5.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{3}$ | $15$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | $15$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{3}$ | $15$ | $15$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.3.4.4 | $x^{3} + 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $S_3$ | $[2]^{2}$ |
| 3.6.8.8 | $x^{6} + 3 x^{5} + 63$ | $3$ | $2$ | $8$ | $S_3\times C_3$ | $[2, 2]^{2}$ | |
| 3.6.8.10 | $x^{6} + 6 x^{5} + 36$ | $3$ | $2$ | $8$ | $S_3\times C_3$ | $[2, 2]^{2}$ | |
| 401 | Data not computed | ||||||
| 19593331 | Data not computed | ||||||