Normalized defining polynomial
\( x^{15} - x^{14} - 112 x^{13} + 27 x^{12} + 4670 x^{11} + 1950 x^{10} - 88262 x^{9} - 82128 x^{8} + 746261 x^{7} + 913205 x^{6} - 2710134 x^{5} - 3747299 x^{4} + 3569665 x^{3} + 5422493 x^{2} - 548532 x - 1342853 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2229659760502257132817812847740961=241^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $167.19$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $241$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(241\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{241}(160,·)$, $\chi_{241}(1,·)$, $\chi_{241}(98,·)$, $\chi_{241}(100,·)$, $\chi_{241}(225,·)$, $\chi_{241}(87,·)$, $\chi_{241}(205,·)$, $\chi_{241}(15,·)$, $\chi_{241}(54,·)$, $\chi_{241}(119,·)$, $\chi_{241}(24,·)$, $\chi_{241}(91,·)$, $\chi_{241}(183,·)$, $\chi_{241}(94,·)$, $\chi_{241}(231,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{6} + \frac{1}{4} a^{5} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{8} a^{12} - \frac{1}{8} a^{11} - \frac{1}{8} a^{10} - \frac{1}{8} a^{9} - \frac{1}{8} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} + \frac{1}{4} a^{3} + \frac{1}{8} a - \frac{1}{8}$, $\frac{1}{8} a^{13} - \frac{1}{8} a^{9} - \frac{1}{4} a^{8} + \frac{1}{8} a^{7} + \frac{1}{8} a^{6} + \frac{1}{4} a^{3} + \frac{3}{8} a^{2} + \frac{3}{8}$, $\frac{1}{216181189387461307942219911120652024} a^{14} - \frac{2353153585751178322412084231860809}{108090594693730653971109955560326012} a^{13} - \frac{503990659368410459589701076760713}{108090594693730653971109955560326012} a^{12} - \frac{12755415075169557448643506716802003}{108090594693730653971109955560326012} a^{11} + \frac{21773145793907298028460643712425809}{216181189387461307942219911120652024} a^{10} - \frac{13058818266192345600825477428314517}{108090594693730653971109955560326012} a^{9} + \frac{4244018145302431442126523871913421}{216181189387461307942219911120652024} a^{8} + \frac{650173868917721059387272942342443}{216181189387461307942219911120652024} a^{7} - \frac{2385706157553338005250065509847467}{27022648673432663492777488890081503} a^{6} + \frac{3138093184714161394126102494107887}{27022648673432663492777488890081503} a^{5} - \frac{32925195801414266343699989459105617}{108090594693730653971109955560326012} a^{4} + \frac{64512513238849155001186482448980571}{216181189387461307942219911120652024} a^{3} - \frac{4007143027514641801387117164034989}{108090594693730653971109955560326012} a^{2} - \frac{83132543001696584924774724447586319}{216181189387461307942219911120652024} a - \frac{7742062596832428118930494231061626}{27022648673432663492777488890081503}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 709889982969 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 15 |
| The 15 conjugacy class representatives for $C_{15}$ |
| Character table for $C_{15}$ |
Intermediate fields
| 3.3.58081.1, 5.5.3373402561.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{5}$ | $15$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{3}$ | $15$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{5}$ | $15$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{3}$ | $15$ | $15$ | $15$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{3}$ | $15$ | $15$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 241 | Data not computed | ||||||