Normalized defining polynomial
\( x^{15} - x^{14} - 76 x^{13} + 13 x^{12} + 2093 x^{11} + 895 x^{10} - 24958 x^{9} - 17536 x^{8} + 133041 x^{7} + 91023 x^{6} - 330836 x^{5} - 156827 x^{4} + 371340 x^{3} + 38908 x^{2} - 166230 x + 43525 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(213817926580534310560958234929=7^{10}\cdot 31^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $90.23$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(217=7\cdot 31\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{217}(64,·)$, $\chi_{217}(1,·)$, $\chi_{217}(193,·)$, $\chi_{217}(8,·)$, $\chi_{217}(9,·)$, $\chi_{217}(142,·)$, $\chi_{217}(81,·)$, $\chi_{217}(51,·)$, $\chi_{217}(78,·)$, $\chi_{217}(214,·)$, $\chi_{217}(72,·)$, $\chi_{217}(25,·)$, $\chi_{217}(200,·)$, $\chi_{217}(190,·)$, $\chi_{217}(191,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{5} a^{5} - \frac{1}{5} a$, $\frac{1}{5} a^{6} - \frac{1}{5} a^{2}$, $\frac{1}{5} a^{7} - \frac{1}{5} a^{3}$, $\frac{1}{5} a^{8} - \frac{1}{5} a^{4}$, $\frac{1}{25} a^{9} + \frac{2}{25} a^{8} - \frac{1}{25} a^{7} - \frac{2}{25} a^{6} - \frac{1}{25} a^{5} + \frac{3}{25} a^{4} + \frac{11}{25} a^{3} - \frac{3}{25} a^{2} - \frac{2}{5} a$, $\frac{1}{25} a^{10} - \frac{2}{25} a^{6} + \frac{1}{25} a^{2}$, $\frac{1}{25} a^{11} - \frac{2}{25} a^{7} + \frac{1}{25} a^{3}$, $\frac{1}{25} a^{12} - \frac{2}{25} a^{8} + \frac{1}{25} a^{4}$, $\frac{1}{125} a^{13} + \frac{2}{125} a^{12} - \frac{1}{125} a^{11} - \frac{2}{125} a^{10} - \frac{2}{125} a^{9} + \frac{6}{125} a^{8} - \frac{3}{125} a^{7} - \frac{6}{125} a^{6} + \frac{6}{125} a^{5} + \frac{42}{125} a^{4} + \frac{29}{125} a^{3} + \frac{58}{125} a^{2} - \frac{6}{25} a + \frac{1}{5}$, $\frac{1}{12773566250476412646875} a^{14} + \frac{99766322776928588}{12773566250476412646875} a^{13} + \frac{236059212818151593881}{12773566250476412646875} a^{12} + \frac{4312085617620558047}{12773566250476412646875} a^{11} - \frac{9994182682097851724}{12773566250476412646875} a^{10} + \frac{113352516833469530584}{12773566250476412646875} a^{9} - \frac{201160694284387371732}{12773566250476412646875} a^{8} + \frac{27051220146700215941}{12773566250476412646875} a^{7} + \frac{182503057260153774633}{2554713250095282529375} a^{6} + \frac{439987530672428721208}{12773566250476412646875} a^{5} + \frac{810614065300989624551}{12773566250476412646875} a^{4} + \frac{1450389327849276760462}{12773566250476412646875} a^{3} + \frac{6292396541359504484208}{12773566250476412646875} a^{2} - \frac{417021864076584809216}{2554713250095282529375} a + \frac{77622278859655749406}{510942650019056505875}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 30932433416.2 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 15 |
| The 15 conjugacy class representatives for $C_{15}$ |
| Character table for $C_{15}$ |
Intermediate fields
| 3.3.47089.2, 5.5.923521.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $15$ | ${\href{/LocalNumberField/3.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/5.1.0.1}{1} }^{15}$ | R | $15$ | $15$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{3}$ | $15$ | $15$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{3}$ | R | ${\href{/LocalNumberField/37.3.0.1}{3} }^{5}$ | $15$ | $15$ | $15$ | $15$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| 31 | Data not computed | ||||||