Normalized defining polynomial
\( x^{15} - x^{14} - 76 x^{13} + 13 x^{12} + 2093 x^{11} + 895 x^{10} - 25826 x^{9} - 21876 x^{8} + 141938 x^{7} + 155038 x^{6} - 298286 x^{5} - 335201 x^{4} + 192098 x^{3} + 163900 x^{2} - 31690 x - 2479 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(213817926580534310560958234929=7^{10}\cdot 31^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $90.23$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(217=7\cdot 31\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{217}(64,·)$, $\chi_{217}(1,·)$, $\chi_{217}(67,·)$, $\chi_{217}(100,·)$, $\chi_{217}(165,·)$, $\chi_{217}(102,·)$, $\chi_{217}(8,·)$, $\chi_{217}(107,·)$, $\chi_{217}(205,·)$, $\chi_{217}(78,·)$, $\chi_{217}(144,·)$, $\chi_{217}(18,·)$, $\chi_{217}(149,·)$, $\chi_{217}(121,·)$, $\chi_{217}(190,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{37} a^{13} + \frac{16}{37} a^{12} - \frac{16}{37} a^{11} + \frac{12}{37} a^{10} - \frac{9}{37} a^{9} + \frac{11}{37} a^{8} - \frac{14}{37} a^{7} + \frac{11}{37} a^{6} + \frac{16}{37} a^{5} - \frac{17}{37} a^{4} - \frac{10}{37} a^{3} + \frac{12}{37} a^{2} - \frac{13}{37} a$, $\frac{1}{3481993429246951226032436131835269} a^{14} - \frac{5814558259069565890062442398271}{3481993429246951226032436131835269} a^{13} - \frac{779671494411389536736009405220607}{3481993429246951226032436131835269} a^{12} + \frac{366693312771628024190274960756538}{3481993429246951226032436131835269} a^{11} + \frac{837131024910092538115340339193524}{3481993429246951226032436131835269} a^{10} + \frac{1153189065407908317428000175825682}{3481993429246951226032436131835269} a^{9} + \frac{22722385859670423295203499959557}{51970051182790316806454270624407} a^{8} - \frac{56861501450380924537021394677458}{3481993429246951226032436131835269} a^{7} + \frac{41558441265000793563852368263943}{3481993429246951226032436131835269} a^{6} - \frac{616459100511528769773436116421270}{3481993429246951226032436131835269} a^{5} + \frac{1578054248470273961474303406076889}{3481993429246951226032436131835269} a^{4} - \frac{903043769380045543519629304012155}{3481993429246951226032436131835269} a^{3} - \frac{296878365432650694382461790322237}{3481993429246951226032436131835269} a^{2} + \frac{943014417370145048480136725670197}{3481993429246951226032436131835269} a - \frac{294004473530439947380931454458}{1404595977913251805579845152011}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2113364265.56 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 15 |
| The 15 conjugacy class representatives for $C_{15}$ |
| Character table for $C_{15}$ |
Intermediate fields
| 3.3.47089.1, 5.5.923521.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $15$ | $15$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{5}$ | R | ${\href{/LocalNumberField/11.5.0.1}{5} }^{3}$ | $15$ | $15$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{3}$ | $15$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{3}$ | R | ${\href{/LocalNumberField/37.1.0.1}{1} }^{15}$ | $15$ | $15$ | $15$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{3}$ | $15$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| 31 | Data not computed | ||||||