Normalized defining polynomial
\( x^{15} - 7 x^{14} - 297 x^{13} + 3108 x^{12} + 11225 x^{11} - 198002 x^{10} + 134362 x^{9} + 3284150 x^{8} - 2555513 x^{7} - 25199016 x^{6} + 139474 x^{5} + 73214629 x^{4} + 42035037 x^{3} - 35952686 x^{2} - 18776851 x + 981137 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2101141399534246351499964130000000000=2^{10}\cdot 5^{10}\cdot 19^{12}\cdot 37^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $263.94$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 19, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{5} a^{9} + \frac{1}{5} a^{8} - \frac{2}{5} a^{6} - \frac{1}{5} a^{5} + \frac{1}{5} a^{4} + \frac{1}{5} a^{3} - \frac{2}{5} a - \frac{1}{5}$, $\frac{1}{5} a^{10} - \frac{1}{5} a^{8} - \frac{2}{5} a^{7} + \frac{1}{5} a^{6} + \frac{2}{5} a^{5} - \frac{1}{5} a^{3} - \frac{2}{5} a^{2} + \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{11} - \frac{1}{5} a^{8} + \frac{1}{5} a^{7} - \frac{1}{5} a^{5} - \frac{1}{5} a^{3} + \frac{1}{5} a^{2} - \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{5} a^{12} + \frac{2}{5} a^{8} + \frac{2}{5} a^{6} - \frac{1}{5} a^{5} + \frac{2}{5} a^{3} - \frac{1}{5} a^{2} + \frac{2}{5} a - \frac{1}{5}$, $\frac{1}{125} a^{13} + \frac{11}{125} a^{12} - \frac{3}{125} a^{10} - \frac{4}{125} a^{9} + \frac{54}{125} a^{8} + \frac{38}{125} a^{7} + \frac{1}{25} a^{6} - \frac{61}{125} a^{5} - \frac{44}{125} a^{4} + \frac{18}{125} a^{3} - \frac{53}{125} a^{2} - \frac{12}{25} a + \frac{37}{125}$, $\frac{1}{5895690897938061455971224355818665740443045060125} a^{14} + \frac{3547621791576494935313306648758136723956016729}{1179138179587612291194244871163733148088609012025} a^{13} + \frac{305028768348923531062522997788505976374886786599}{5895690897938061455971224355818665740443045060125} a^{12} + \frac{414630450924128387324900675095983675004009639522}{5895690897938061455971224355818665740443045060125} a^{11} - \frac{152340357125005637894652943734979139212956478331}{5895690897938061455971224355818665740443045060125} a^{10} + \frac{479734556205814159668802950464238356256497194143}{5895690897938061455971224355818665740443045060125} a^{9} + \frac{1184559965854789812333430443661352459094849830674}{5895690897938061455971224355818665740443045060125} a^{8} - \frac{2279347866024861046926627730818773370372662795153}{5895690897938061455971224355818665740443045060125} a^{7} + \frac{2024150004645787844341336022116456411476800398684}{5895690897938061455971224355818665740443045060125} a^{6} + \frac{2484835296856501206553825359208165630582389875657}{5895690897938061455971224355818665740443045060125} a^{5} - \frac{2501398388426795032936111161528602596096518524003}{5895690897938061455971224355818665740443045060125} a^{4} - \frac{682662203746574536122605739485066247503821291616}{5895690897938061455971224355818665740443045060125} a^{3} - \frac{29590211505810629329275483177343256678882360727}{190183577352840692128104011478021475498162743875} a^{2} + \frac{2533583729413870714211216800470345982396077186922}{5895690897938061455971224355818665740443045060125} a - \frac{2687812551113183692131557599569680882922413787742}{5895690897938061455971224355818665740443045060125}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 21270551246000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1500 |
| The 40 conjugacy class representatives for [5^3:2]S(3) |
| Character table for [5^3:2]S(3) is not computed |
Intermediate fields
| 3.3.148.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | $15$ | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }$ | R | ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.5.0.1}{5} }$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | R | $15$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.5.6.1 | $x^{5} + 10 x^{2} + 5$ | $5$ | $1$ | $6$ | $D_{5}$ | $[3/2]_{2}$ | |
| $19$ | 19.5.4.1 | $x^{5} - 19$ | $5$ | $1$ | $4$ | $D_{5}$ | $[\ ]_{5}^{2}$ |
| 19.10.8.2 | $x^{10} - 19 x^{5} + 722$ | $5$ | $2$ | $8$ | $D_5\times C_5$ | $[\ ]_{5}^{10}$ | |
| 37 | Data not computed | ||||||