Properties

Label 15.15.2059511496...0617.1
Degree $15$
Signature $[15, 0]$
Discriminant $11^{5}\cdot 19^{6}\cdot 43^{7}$
Root discriminant $41.78$
Ramified primes $11, 19, 43$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $D_5\times S_3$ (as 15T7)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-25, -258, -478, 1492, 2550, -3451, -3826, 3636, 2135, -1654, -528, 340, 56, -31, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^15 - 2*x^14 - 31*x^13 + 56*x^12 + 340*x^11 - 528*x^10 - 1654*x^9 + 2135*x^8 + 3636*x^7 - 3826*x^6 - 3451*x^5 + 2550*x^4 + 1492*x^3 - 478*x^2 - 258*x - 25)
 
gp: K = bnfinit(x^15 - 2*x^14 - 31*x^13 + 56*x^12 + 340*x^11 - 528*x^10 - 1654*x^9 + 2135*x^8 + 3636*x^7 - 3826*x^6 - 3451*x^5 + 2550*x^4 + 1492*x^3 - 478*x^2 - 258*x - 25, 1)
 

Normalized defining polynomial

\( x^{15} - 2 x^{14} - 31 x^{13} + 56 x^{12} + 340 x^{11} - 528 x^{10} - 1654 x^{9} + 2135 x^{8} + 3636 x^{7} - 3826 x^{6} - 3451 x^{5} + 2550 x^{4} + 1492 x^{3} - 478 x^{2} - 258 x - 25 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $15$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[15, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(2059511496355375228200617=11^{5}\cdot 19^{6}\cdot 43^{7}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $41.78$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $11, 19, 43$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{5} a^{11} + \frac{2}{5} a^{9} - \frac{1}{5} a^{8} + \frac{2}{5} a^{6} - \frac{2}{5} a^{5} + \frac{1}{5} a^{4} + \frac{1}{5} a^{2} - \frac{2}{5} a$, $\frac{1}{5} a^{12} + \frac{2}{5} a^{10} - \frac{1}{5} a^{9} + \frac{2}{5} a^{7} - \frac{2}{5} a^{6} + \frac{1}{5} a^{5} + \frac{1}{5} a^{3} - \frac{2}{5} a^{2}$, $\frac{1}{5} a^{13} - \frac{1}{5} a^{10} + \frac{1}{5} a^{9} - \frac{1}{5} a^{8} - \frac{2}{5} a^{7} + \frac{2}{5} a^{6} - \frac{1}{5} a^{5} - \frac{1}{5} a^{4} - \frac{2}{5} a^{3} - \frac{2}{5} a^{2} - \frac{1}{5} a$, $\frac{1}{31074880323185} a^{14} - \frac{976470235282}{31074880323185} a^{13} + \frac{1824972124086}{31074880323185} a^{12} + \frac{1142117914947}{31074880323185} a^{11} - \frac{2104458906920}{6214976064637} a^{10} - \frac{497335435393}{31074880323185} a^{9} - \frac{485708914603}{31074880323185} a^{8} + \frac{14566812711408}{31074880323185} a^{7} - \frac{15026636596106}{31074880323185} a^{6} - \frac{4718804868139}{31074880323185} a^{5} + \frac{10463746704098}{31074880323185} a^{4} + \frac{12605027674398}{31074880323185} a^{3} - \frac{10864115601131}{31074880323185} a^{2} + \frac{11126794373306}{31074880323185} a - \frac{2400803119761}{6214976064637}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $14$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 23004967.3416 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$S_3\times D_5$ (as 15T7):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 60
The 12 conjugacy class representatives for $D_5\times S_3$
Character table for $D_5\times S_3$

Intermediate fields

3.3.473.1, 5.5.667489.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 30 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $15$ ${\href{/LocalNumberField/3.10.0.1}{10} }{,}\,{\href{/LocalNumberField/3.5.0.1}{5} }$ ${\href{/LocalNumberField/5.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ R ${\href{/LocalNumberField/13.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }$ R $15$ $15$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ R $15$ ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$11$11.5.0.1$x^{5} + x^{2} - x + 5$$1$$5$$0$$C_5$$[\ ]^{5}$
11.10.5.2$x^{10} + 1331 x^{4} - 14641 x^{2} + 805255$$2$$5$$5$$C_{10}$$[\ ]_{2}^{5}$
$19$19.3.0.1$x^{3} - x + 4$$1$$3$$0$$C_3$$[\ ]^{3}$
19.6.3.1$x^{6} - 38 x^{4} + 361 x^{2} - 109744$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
19.6.3.1$x^{6} - 38 x^{4} + 361 x^{2} - 109744$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
43Data not computed