Normalized defining polynomial
\( x^{15} - 2106 x^{13} - 16848 x^{12} + 1129752 x^{11} + 18581472 x^{10} - 78499800 x^{9} - 4227619392 x^{8} - 44677501536 x^{7} - 242693414016 x^{6} - 782507994240 x^{5} - 1577524101120 x^{4} - 2011326630400 x^{3} - 1578520012800 x^{2} - 697138176000 x - 132788224000 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1970267782154216617690093863120316160444627676893184000000=2^{18}\cdot 3^{20}\cdot 5^{6}\cdot 17^{6}\cdot 1907^{4}\cdot 657388279^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $6601.38$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 17, 1907, 657388279$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{20} a^{5} - \frac{1}{10} a^{3} + \frac{1}{5} a^{2}$, $\frac{1}{40} a^{6} - \frac{1}{20} a^{4} + \frac{1}{10} a^{3}$, $\frac{1}{80} a^{7} - \frac{1}{40} a^{5} + \frac{1}{20} a^{4} - \frac{1}{2} a$, $\frac{1}{800} a^{8} + \frac{3}{400} a^{6} + \frac{1}{100} a^{5} + \frac{2}{25} a^{4} - \frac{1}{50} a^{3} + \frac{7}{100} a^{2} - \frac{1}{5}$, $\frac{1}{3200} a^{9} + \frac{3}{1600} a^{7} - \frac{1}{100} a^{6} - \frac{7}{400} a^{5} + \frac{1}{50} a^{4} + \frac{17}{400} a^{3} + \frac{1}{10} a^{2} + \frac{9}{20} a$, $\frac{1}{108800} a^{10} - \frac{1}{2176} a^{8} - \frac{21}{3400} a^{7} - \frac{169}{13600} a^{6} - \frac{3}{850} a^{5} + \frac{17}{800} a^{4} - \frac{3}{100} a^{3} + \frac{11}{200} a^{2} + \frac{1}{5}$, $\frac{1}{2176000} a^{11} + \frac{77}{1088000} a^{9} + \frac{77}{136000} a^{8} - \frac{89}{68000} a^{7} - \frac{709}{68000} a^{6} + \frac{49}{3200} a^{5} + \frac{161}{2000} a^{4} + \frac{163}{2000} a^{3} - \frac{181}{1000} a^{2} + \frac{29}{200} a + \frac{13}{50}$, $\frac{1}{21760000} a^{12} - \frac{43}{10880000} a^{10} - \frac{89}{680000} a^{9} - \frac{7}{21250} a^{8} - \frac{767}{340000} a^{7} - \frac{6559}{544000} a^{6} + \frac{5707}{340000} a^{5} - \frac{947}{20000} a^{4} - \frac{89}{2500} a^{3} - \frac{427}{2000} a^{2} - \frac{111}{250} a + \frac{7}{25}$, $\frac{1}{87040000000} a^{13} - \frac{31}{2176000000} a^{12} + \frac{4827}{43520000000} a^{11} + \frac{1681}{2720000000} a^{10} - \frac{1003961}{10880000000} a^{9} - \frac{1028459}{2720000000} a^{8} - \frac{10360719}{2176000000} a^{7} - \frac{2094881}{170000000} a^{6} - \frac{9584183}{2720000000} a^{5} + \frac{297329}{40000000} a^{4} + \frac{1367743}{8000000} a^{3} + \frac{93673}{1000000} a^{2} - \frac{53993}{400000} a + \frac{13241}{100000}$, $\frac{1}{11141120000000} a^{14} - \frac{11}{2785280000000} a^{13} + \frac{59307}{5570560000000} a^{12} - \frac{250003}{1392640000000} a^{11} + \frac{277879}{81920000000} a^{10} + \frac{25474601}{174080000000} a^{9} - \frac{338383451}{1392640000000} a^{8} - \frac{1401121001}{348160000000} a^{7} + \frac{3782363001}{348160000000} a^{6} - \frac{29798443}{1280000000} a^{5} - \frac{501167801}{5120000000} a^{4} + \frac{21874903}{256000000} a^{3} + \frac{29569851}{256000000} a^{2} - \frac{3010933}{6400000} a + \frac{1305059}{3200000}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 955284233958000000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 2592000 |
| The 71 conjugacy class representatives for [1/2.S(5)^3]3 are not computed |
| Character table for [1/2.S(5)^3]3 is not computed |
Intermediate fields
| \(\Q(\zeta_{9})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
| Degree 45 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | ${\href{/LocalNumberField/11.9.0.1}{9} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | $15$ | R | ${\href{/LocalNumberField/19.5.0.1}{5} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.9.0.1}{9} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | $15$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{7}$ | $15$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.5.0.1}{5} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | $15$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.6.9.6 | $x^{6} + 4 x^{2} + 8$ | $2$ | $3$ | $9$ | $A_4\times C_2$ | $[2, 2, 3]^{3}$ | |
| 2.6.9.6 | $x^{6} + 4 x^{2} + 8$ | $2$ | $3$ | $9$ | $A_4\times C_2$ | $[2, 2, 3]^{3}$ | |
| 3 | Data not computed | ||||||
| $5$ | 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $17$ | 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 17.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 17.5.4.1 | $x^{5} - 17$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 1907 | Data not computed | ||||||
| 657388279 | Data not computed | ||||||