Normalized defining polynomial
\( x^{15} - 87 x^{13} - 103 x^{12} + 2295 x^{11} + 2970 x^{10} - 26915 x^{9} - 24300 x^{8} + 166500 x^{7} + 48050 x^{6} - 532125 x^{5} + 172875 x^{4} + 677750 x^{3} - 579375 x^{2} + 30000 x + 63125 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(19343994249123115056059765625=3^{20}\cdot 5^{8}\cdot 61^{3}\cdot 397^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $76.87$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 61, 397$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{5} a^{6} - \frac{2}{5} a^{4} + \frac{2}{5} a^{3}$, $\frac{1}{5} a^{7} - \frac{2}{5} a^{5} + \frac{2}{5} a^{4}$, $\frac{1}{5} a^{8} + \frac{2}{5} a^{5} + \frac{1}{5} a^{4} - \frac{1}{5} a^{3}$, $\frac{1}{25} a^{9} - \frac{2}{25} a^{7} + \frac{2}{25} a^{6} + \frac{1}{5} a^{4} - \frac{1}{5} a^{3}$, $\frac{1}{50} a^{10} - \frac{1}{50} a^{9} + \frac{3}{50} a^{8} + \frac{2}{25} a^{7} + \frac{3}{50} a^{6} + \frac{3}{10} a^{5} + \frac{1}{5} a^{4} - \frac{3}{10} a^{3} - \frac{1}{2}$, $\frac{1}{50} a^{11} - \frac{3}{50} a^{8} + \frac{1}{50} a^{7} + \frac{2}{25} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{3}{10} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{250} a^{12} - \frac{1}{125} a^{10} - \frac{3}{250} a^{9} - \frac{1}{10} a^{8} - \frac{1}{25} a^{7} - \frac{3}{50} a^{6} - \frac{1}{10} a^{5} - \frac{1}{2} a^{4} + \frac{2}{5} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{250} a^{13} - \frac{1}{125} a^{11} + \frac{1}{125} a^{10} + \frac{1}{50} a^{8} - \frac{1}{50} a^{7} + \frac{2}{5} a^{5} + \frac{1}{5} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{83921322258652699750} a^{14} - \frac{103389594820989}{41960661129326349875} a^{13} - \frac{17431293473738087}{41960661129326349875} a^{12} - \frac{327339516595389837}{83921322258652699750} a^{11} + \frac{156216330720732593}{83921322258652699750} a^{10} + \frac{688779877714825523}{41960661129326349875} a^{9} - \frac{384903895435598719}{16784264451730539950} a^{8} + \frac{313834052740465447}{3356852890346107990} a^{7} + \frac{168352505100405129}{3356852890346107990} a^{6} - \frac{43677512100541796}{1678426445173053995} a^{5} + \frac{1038716032244122103}{3356852890346107990} a^{4} + \frac{392896433954197551}{3356852890346107990} a^{3} + \frac{164354595373937541}{335685289034610799} a^{2} - \frac{21142821584200051}{335685289034610799} a + \frac{86718543411755659}{335685289034610799}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1159976798.54 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 9720 |
| The 36 conjugacy class representatives for [3^4]S(5) |
| Character table for [3^4]S(5) is not computed |
Intermediate fields
| 5.5.24217.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{3}$ | R | R | ${\href{/LocalNumberField/7.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/11.9.0.1}{9} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }$ | ${\href{/LocalNumberField/13.9.0.1}{9} }{,}\,{\href{/LocalNumberField/13.6.0.1}{6} }$ | ${\href{/LocalNumberField/17.9.0.1}{9} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | ${\href{/LocalNumberField/31.9.0.1}{9} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $5$ | 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 5.12.8.2 | $x^{12} + 25 x^{6} - 250 x^{3} + 1250$ | $3$ | $4$ | $8$ | $C_3\times (C_3 : C_4)$ | $[\ ]_{3}^{12}$ | |
| $61$ | 61.3.0.1 | $x^{3} - x + 10$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 61.6.0.1 | $x^{6} - 4 x + 10$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 61.6.3.1 | $x^{6} - 122 x^{4} + 3721 x^{2} - 22698100$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 397 | Data not computed | ||||||