Normalized defining polynomial
\( x^{15} - 123 x^{13} - 20 x^{12} + 5292 x^{11} + 1584 x^{10} - 97160 x^{9} - 49536 x^{8} + 717312 x^{7} + 579072 x^{6} - 1285488 x^{5} - 1530432 x^{4} + 63232 x^{3} + 663552 x^{2} + 285696 x + 36864 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(193031336102078228638557618044928=2^{24}\cdot 3^{20}\cdot 53^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $142.03$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{7} - \frac{1}{8} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{16} a^{8} + \frac{1}{16} a^{6} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{16} a^{9} - \frac{1}{16} a^{7} - \frac{1}{8} a^{5} - \frac{1}{4} a^{4}$, $\frac{1}{32} a^{10} - \frac{1}{32} a^{8} + \frac{1}{16} a^{6} - \frac{1}{8} a^{5} - \frac{1}{8} a^{4} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{64} a^{11} - \frac{1}{64} a^{9} + \frac{1}{32} a^{7} - \frac{1}{16} a^{6} - \frac{1}{16} a^{5} + \frac{1}{8} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{128} a^{12} + \frac{1}{128} a^{10} - \frac{1}{32} a^{9} - \frac{1}{8} a^{5} + \frac{1}{8} a^{4} + \frac{1}{4} a^{3} - \frac{1}{8} a^{2} - \frac{1}{2} a$, $\frac{1}{512} a^{13} - \frac{3}{512} a^{11} - \frac{1}{128} a^{10} + \frac{1}{128} a^{9} + \frac{3}{64} a^{7} - \frac{1}{16} a^{6} + \frac{1}{8} a^{4} - \frac{7}{32} a^{3} - \frac{3}{8} a^{2} - \frac{1}{4} a$, $\frac{1}{28675182955952043025913856} a^{14} - \frac{1088392255743203732549}{1194799289831335126079744} a^{13} - \frac{825496900735678035601}{9558394318650681008637952} a^{12} - \frac{35559902513606609860259}{7168795738988010756478464} a^{11} + \frac{26503581319075986338095}{2389598579662670252159488} a^{10} + \frac{14038003109843973369679}{597399644915667563039872} a^{9} + \frac{2813452292367250113107}{3584397869494005378239232} a^{8} - \frac{9198960264916984656703}{149349911228916890759968} a^{7} + \frac{6802528224321319536095}{149349911228916890759968} a^{6} + \frac{179820924440019686839}{37337477807229222689992} a^{5} + \frac{59651773115779852220163}{597399644915667563039872} a^{4} - \frac{6781204686001963273933}{149349911228916890759968} a^{3} + \frac{81787193953082750815199}{224024866843375336139952} a^{2} + \frac{706901846734177171932}{4667184725903652836249} a + \frac{1520813620217238211216}{4667184725903652836249}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1712775117290 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 77760 |
| The 45 conjugacy class representatives for [1/2.S(3)^5]F(5) |
| Character table for [1/2.S(3)^5]F(5) is not computed |
Intermediate fields
| 5.5.2382032.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 30 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | $15$ | $15$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | $15$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | R | $15$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ | |
| 2.8.18.41 | $x^{8} + 4 x^{6} + 20 x^{4} + 44$ | $4$ | $2$ | $18$ | $((C_8 : C_2):C_2):C_2$ | $[2, 3, 3, 7/2]^{4}$ | |
| $3$ | 3.3.4.4 | $x^{3} + 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $S_3$ | $[2]^{2}$ |
| 3.12.16.6 | $x^{12} + 120 x^{11} - 117 x^{10} - 57 x^{9} + 36 x^{8} + 54 x^{7} - 18 x^{6} + 81 x^{5} + 81$ | $3$ | $4$ | $16$ | 12T46 | $[2, 2]^{8}$ | |
| $53$ | 53.3.0.1 | $x^{3} - x + 8$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 53.12.9.2 | $x^{12} - 106 x^{8} + 2809 x^{4} - 9528128$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |