Normalized defining polynomial
\( x^{15} - 2 x^{14} - 43 x^{13} + 100 x^{12} + 622 x^{11} - 1668 x^{10} - 3380 x^{9} + 11013 x^{8} + 4836 x^{7} - 27366 x^{6} + 3839 x^{5} + 23300 x^{4} - 6520 x^{3} - 6663 x^{2} + 1723 x + 197 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(19241912323039288533050521=11^{12}\cdot 19^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $48.49$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(209=11\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{209}(64,·)$, $\chi_{209}(1,·)$, $\chi_{209}(163,·)$, $\chi_{209}(102,·)$, $\chi_{209}(201,·)$, $\chi_{209}(45,·)$, $\chi_{209}(144,·)$, $\chi_{209}(49,·)$, $\chi_{209}(115,·)$, $\chi_{209}(20,·)$, $\chi_{209}(26,·)$, $\chi_{209}(159,·)$, $\chi_{209}(58,·)$, $\chi_{209}(125,·)$, $\chi_{209}(191,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{79558723009865103705733} a^{14} - \frac{27781103092348323877477}{79558723009865103705733} a^{13} - \frac{4679131509343446783192}{79558723009865103705733} a^{12} + \frac{18375265261250659683472}{79558723009865103705733} a^{11} + \frac{5944532062656426382484}{79558723009865103705733} a^{10} - \frac{11460419137972451570578}{79558723009865103705733} a^{9} - \frac{34794616323348689036803}{79558723009865103705733} a^{8} - \frac{33807488999702967339222}{79558723009865103705733} a^{7} - \frac{36614679320120092748231}{79558723009865103705733} a^{6} - \frac{17062657115156750728896}{79558723009865103705733} a^{5} + \frac{22547000991091646944056}{79558723009865103705733} a^{4} + \frac{24482270397004665786747}{79558723009865103705733} a^{3} + \frac{4860636621020262981509}{79558723009865103705733} a^{2} + \frac{26563942987350214407321}{79558723009865103705733} a + \frac{39488382583456003237824}{79558723009865103705733}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 39634245.0922 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 15 |
| The 15 conjugacy class representatives for $C_{15}$ |
| Character table for $C_{15}$ |
Intermediate fields
| 3.3.361.1, \(\Q(\zeta_{11})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $15$ | $15$ | $15$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{3}$ | R | $15$ | $15$ | R | ${\href{/LocalNumberField/23.3.0.1}{3} }^{5}$ | $15$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{3}$ | $15$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{5}$ | $15$ | $15$ | $15$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 19 | Data not computed | ||||||