Normalized defining polynomial
\( x^{15} - 1449 x^{13} - 5364 x^{12} + 494981 x^{11} + 1241310 x^{10} - 49569282 x^{9} - 129545388 x^{8} + 1541051052 x^{7} + 4909046392 x^{6} - 2890123600 x^{5} - 19343665440 x^{4} - 7245012800 x^{3} + 18916572800 x^{2} + 14524608000 x + 2766592000 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(192088820668994844315798629752765566154819292680192000000=2^{18}\cdot 5^{6}\cdot 101^{4}\cdot 107^{4}\cdot 193\cdot 229^{5}\cdot 9337^{2}\cdot 18013^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $5652.41$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 101, 107, 193, 229, 9337, 18013$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{6} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{9} - \frac{1}{8} a^{7} - \frac{3}{8} a^{5} + \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{16} a^{10} - \frac{1}{16} a^{8} - \frac{1}{4} a^{7} - \frac{3}{16} a^{6} - \frac{1}{8} a^{5} + \frac{3}{8} a^{4} + \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{160} a^{11} - \frac{9}{160} a^{9} - \frac{1}{40} a^{8} + \frac{21}{160} a^{7} + \frac{3}{16} a^{6} + \frac{39}{80} a^{5} + \frac{13}{40} a^{4} - \frac{17}{40} a^{3} + \frac{9}{20} a^{2} - \frac{1}{2} a$, $\frac{1}{320} a^{12} - \frac{9}{320} a^{10} - \frac{1}{80} a^{9} + \frac{21}{320} a^{8} - \frac{5}{32} a^{7} + \frac{39}{160} a^{6} - \frac{7}{80} a^{5} + \frac{23}{80} a^{4} + \frac{19}{40} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{3200} a^{13} - \frac{9}{3200} a^{11} + \frac{9}{800} a^{10} + \frac{21}{3200} a^{9} - \frac{5}{64} a^{8} - \frac{121}{1600} a^{7} + \frac{3}{800} a^{6} + \frac{43}{800} a^{5} - \frac{91}{400} a^{4} - \frac{9}{40} a^{3} + \frac{1}{5} a^{2} - \frac{1}{2} a$, $\frac{1}{53837884186915303054625033076466812642446957435239502067200} a^{14} + \frac{226547651294910546366419947407544395355725974616094071}{2691894209345765152731251653823340632122347871761975103360} a^{13} - \frac{9076395762419135249591964503004504504923451349686423849}{53837884186915303054625033076466812642446957435239502067200} a^{12} + \frac{2776240975434314267045583574162126396579444847118411611}{3364867761682206440914064567279175790152934839702468879200} a^{11} - \frac{159979562702327433080105324279565982361494159513596618557}{7691126312416471864946433296638116091778136776462786009600} a^{10} + \frac{5290540693087428462226615119975653340974091119263970411}{153822526248329437298928665932762321835562735529255720192} a^{9} - \frac{388553081844822392324310652006715020687195671545175574283}{3845563156208235932473216648319058045889068388231393004800} a^{8} - \frac{277576736685164992468792500518986567511684256628335154811}{1922781578104117966236608324159529022944534194115696502400} a^{7} - \frac{80937169888338572585024553055956344976079973608717953021}{363769487749427723342061034300451436773290252940807446400} a^{6} - \frac{2834827702263511774047897587096570816654118528585005220651}{6729735523364412881828129134558351580305869679404937758400} a^{5} - \frac{304766629583196717512473958950748942822675200425201106219}{672973552336441288182812913455835158030586967940493775840} a^{4} - \frac{13404543411584138281577349885151395245760030481885451901}{67297355233644128818281291345583515803058696794049377584} a^{3} - \frac{34629742526207761654636911925380537232290774628310996073}{168243388084110322045703228363958789507646741985123443960} a^{2} - \frac{234475543733381638824813711738791509665103513214442141}{16824338808411032204570322836395878950764674198512344396} a - \frac{1464321201217947446604082171819457568500114019096268276}{4206084702102758051142580709098969737691168549628086099}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1226973821300000000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 10368000 |
| The 140 conjugacy class representatives for [S(5)^3]S(3)=S(5)wrS(3) are not computed |
| Character table for [S(5)^3]S(3)=S(5)wrS(3) is not computed |
Intermediate fields
| 3.3.229.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
| Degree 45 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $15$ | R | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.9.0.1}{9} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.5.0.1}{5} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{5}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.9.0.1}{9} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.4.6.5 | $x^{4} + 2 x^{2} - 4$ | $2$ | $2$ | $6$ | $D_{4}$ | $[2, 3]^{2}$ | |
| 2.4.6.3 | $x^{4} + 2 x^{2} + 20$ | $2$ | $2$ | $6$ | $C_4$ | $[3]^{2}$ | |
| 2.4.6.6 | $x^{4} - 20$ | $2$ | $2$ | $6$ | $D_{4}$ | $[2, 3]^{2}$ | |
| $5$ | 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $101$ | 101.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 101.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 101.5.4.1 | $x^{5} - 101$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 101.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 107 | Data not computed | ||||||
| $193$ | $\Q_{193}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{193}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{193}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 193.2.1.2 | $x^{2} + 965$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 193.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 193.3.0.1 | $x^{3} - x + 5$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 193.5.0.1 | $x^{5} - x + 5$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 229 | Data not computed | ||||||
| 9337 | Data not computed | ||||||
| 18013 | Data not computed | ||||||