Normalized defining polynomial
\( x^{15} - 5082 x^{13} - 7752 x^{12} + 10106636 x^{11} + 37878064 x^{10} - 10043207752 x^{9} - 63850635200 x^{8} + 5167148500176 x^{7} + 47814832667776 x^{6} - 1236668673788960 x^{5} - 15834444242156160 x^{4} + 80444100448171200 x^{3} + 1792435586109190400 x^{2} + 6375394044674816000 x + 542000152064000 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(191462095148251089869153304845837565344604688384000000=2^{18}\cdot 5^{6}\cdot 7^{10}\cdot 29^{4}\cdot 41^{4}\cdot 287744824009^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $3565.65$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7, 29, 41, 287744824009$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{4} a^{5}$, $\frac{1}{8} a^{6}$, $\frac{1}{8} a^{7}$, $\frac{1}{16} a^{8}$, $\frac{1}{16} a^{9}$, $\frac{1}{32} a^{10}$, $\frac{1}{160} a^{11} - \frac{1}{80} a^{9} - \frac{1}{80} a^{8} - \frac{1}{40} a^{7} + \frac{1}{40} a^{6} + \frac{1}{20} a^{5} + \frac{1}{10} a^{3} + \frac{1}{10} a^{2}$, $\frac{1}{320} a^{12} - \frac{1}{160} a^{10} + \frac{1}{40} a^{9} - \frac{1}{80} a^{8} - \frac{1}{20} a^{7} + \frac{1}{40} a^{6} + \frac{1}{20} a^{4} - \frac{1}{5} a^{3}$, $\frac{1}{19200} a^{13} + \frac{1}{960} a^{12} - \frac{7}{3200} a^{11} + \frac{13}{1200} a^{10} + \frac{79}{4800} a^{9} - \frac{31}{1200} a^{8} - \frac{29}{2400} a^{7} - \frac{1}{40} a^{6} - \frac{119}{1200} a^{5} - \frac{3}{25} a^{4} + \frac{1}{8} a^{3} - \frac{1}{10} a^{2} + \frac{1}{4} a - \frac{1}{3}$, $\frac{1}{70222136887736675117281752567106631071698938077893625007735067595485251616777870403586688683596800} a^{14} + \frac{18756273951320986384060773886715926512909867191005263846222199188582398333092284662688663797}{877776711096708438966021907088832888396236725973670312596688344943565645209723380044833608544960} a^{13} - \frac{6311084390143651896991931675198879486519522100385392376710365028701758059224840909761096448941}{35111068443868337558640876283553315535849469038946812503867533797742625808388935201793344341798400} a^{12} + \frac{11662254990165951093478826977923190541202282055836838858082192380214990424871246169757616116731}{8777767110967084389660219070888328883962367259736703125966883449435656452097233800448336085449600} a^{11} - \frac{3610695317176033277389211977600828411372900634567066465940207187596407254596891590216814924007}{5851844740644722926440146047258885922641578173157802083977922299623770968064822533632224056966400} a^{10} - \frac{60700322599161580107612513902773761097244806587116080911242951891038719081756080508715525946801}{4388883555483542194830109535444164441981183629868351562983441724717828226048616900224168042724800} a^{9} - \frac{29680950624289237550230051297563945846688433040358615718045568129435713226640846738927197152241}{975307456774120487740024341209814320440263028859633680662987049937295161344137088938704009494400} a^{8} - \frac{953426342451567740932447982476912140553419009902665884130991167201581662784869130000685462961}{43888835554835421948301095354441644419811836298683515629834417247178282260486169002241680427248} a^{7} - \frac{212380999064415296324179714741555178014747423751317849865304684294718640858167642125449072478659}{4388883555483542194830109535444164441981183629868351562983441724717828226048616900224168042724800} a^{6} - \frac{32053030851546171762666901717423927504360505903014618918177693425691173464917991883678693373343}{548610444435442774353763691930520555247647953733543945372930215589728528256077112528021005340600} a^{5} + \frac{116956871355100590507115982661402215237774416175905384333318162603599409220904190052091396313}{1008938748387021194213818284010152745283030719509965876547917637866167408287038367867624837408} a^{4} + \frac{134720869020922189868587226286864775561690422062411041120523993957288809805890699453502871817}{1261173435483776492767272855012690931603788399387457345684897047332709260358797959834531046760} a^{3} + \frac{192802945820077328178717397848541552740713889356610816357145949936855814002589344759864357491}{840782290322517661844848570008460621069192266258304897123264698221806173572531973223020697840} a^{2} - \frac{173744290093790472623921492952178487614295087658468263365886779837513410174525361918829365943}{378352030645132947830181856503807279481136519816237203705469114199812778107639387950359314028} a + \frac{9784651319838805828155176439101415833524143705070664371809073440962836262356264848491749472}{94588007661283236957545464125951819870284129954059300926367278549953194526909846987589828507}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3288787740280000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 648000 |
| The 55 conjugacy class representatives for [A(5)^3]3=A(5)wr3 are not computed |
| Character table for [A(5)^3]3=A(5)wr3 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
| Degree 30 sibling: | data not computed |
| Degree 36 sibling: | data not computed |
| Degree 45 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.9.0.1}{9} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | R | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.9.0.1}{9} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | $15$ | R | $15$ | $15$ | R | ${\href{/LocalNumberField/43.5.0.1}{5} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ | $15$ | ${\href{/LocalNumberField/53.9.0.1}{9} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.6.9.2 | $x^{6} + 4 x^{2} - 8$ | $2$ | $3$ | $9$ | $A_4\times C_2$ | $[2, 2, 3]^{3}$ | |
| 2.6.9.2 | $x^{6} + 4 x^{2} - 8$ | $2$ | $3$ | $9$ | $A_4\times C_2$ | $[2, 2, 3]^{3}$ | |
| $5$ | 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $7$ | 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| $29$ | $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 29.5.4.1 | $x^{5} - 29$ | $5$ | $1$ | $4$ | $D_{5}$ | $[\ ]_{5}^{2}$ | |
| $41$ | 41.5.4.5 | $x^{5} - 53136$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 41.5.0.1 | $x^{5} - x + 7$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 41.5.0.1 | $x^{5} - x + 7$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 287744824009 | Data not computed | ||||||