Normalized defining polynomial
\( x^{15} - 6 x^{14} - 99 x^{13} + 828 x^{12} + 1788 x^{11} - 31470 x^{10} + 39915 x^{9} + 419754 x^{8} - 1257327 x^{7} - 1619812 x^{6} + 10239144 x^{5} - 4633212 x^{4} - 27918981 x^{3} + 30020616 x^{2} + 22949361 x - 33389427 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(188613969258415859047907606953125=3^{22}\cdot 5^{7}\cdot 23^{2}\cdot 31^{2}\cdot 73^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $141.81$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 23, 31, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{27557941845190485219821311802833} a^{14} - \frac{12685604713100801537085679494327}{27557941845190485219821311802833} a^{13} + \frac{6102873051817237488279159434927}{27557941845190485219821311802833} a^{12} - \frac{13290746399836163799771084311155}{27557941845190485219821311802833} a^{11} - \frac{236063953616928240307047342823}{27557941845190485219821311802833} a^{10} - \frac{6413759226945103736685768418034}{27557941845190485219821311802833} a^{9} - \frac{8041666511503518778312137984051}{27557941845190485219821311802833} a^{8} - \frac{9207382678486614946375479742934}{27557941845190485219821311802833} a^{7} - \frac{1885052735449917593021479481048}{27557941845190485219821311802833} a^{6} - \frac{2141815958777946775327377798399}{27557941845190485219821311802833} a^{5} + \frac{8070934813071190076883860214282}{27557941845190485219821311802833} a^{4} + \frac{224542968749571485087626214542}{744809239059202303238413832509} a^{3} + \frac{11838427043491541280177118382649}{27557941845190485219821311802833} a^{2} + \frac{12993934989536617104998457442317}{27557941845190485219821311802833} a + \frac{10127961125073241426122069514068}{27557941845190485219821311802833}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 652004532602 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 29160 |
| The 48 conjugacy class representatives for [3^5:2]A(5) |
| Character table for [3^5:2]A(5) is not computed |
Intermediate fields
| 5.5.10791225.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 15 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 45 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }{,}\,{\href{/LocalNumberField/2.5.0.1}{5} }$ | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }$ | $15$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }$ | $15$ | R | ${\href{/LocalNumberField/29.5.0.1}{5} }^{3}$ | R | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.9.16 | $x^{6} + 3 x^{4} + 6 x^{3} + 3$ | $6$ | $1$ | $9$ | $S_3^2$ | $[3/2, 2]_{2}^{2}$ |
| 3.9.13.2 | $x^{9} + 6 x^{5} + 3 x^{3} + 3$ | $9$ | $1$ | $13$ | $C_3^2 : D_{6} $ | $[3/2, 3/2, 5/3]_{2}^{2}$ | |
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $23$ | 23.3.2.1 | $x^{3} - 23$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 23.6.0.1 | $x^{6} - x + 15$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 23.6.0.1 | $x^{6} - x + 15$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 31 | Data not computed | ||||||
| $73$ | $\Q_{73}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{73}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 73.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 73.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 73.3.2.3 | $x^{3} - 1825$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 73.6.4.2 | $x^{6} - 73 x^{3} + 58619$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |