Normalized defining polynomial
\( x^{15} - x^{14} - 285 x^{13} + 453 x^{12} + 26096 x^{11} - 51724 x^{10} - 1041392 x^{9} + 2504704 x^{8} + 19828675 x^{7} - 58060643 x^{6} - 163395653 x^{5} + 632388425 x^{4} + 201820423 x^{3} - 2526579387 x^{2} + 2758438455 x - 798463067 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(187650668178675410163314785843943833600000000=2^{24}\cdot 5^{8}\cdot 13^{10}\cdot 151^{2}\cdot 3947^{2}\cdot 24181^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $894.45$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 13, 151, 3947, 24181$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{369314152021811705248598126865621648035367939850876} a^{14} - \frac{860868441806849479296293293401438422524595374653}{184657076010905852624299063432810824017683969925438} a^{13} - \frac{73175306693502552516321117975793766776589886192571}{369314152021811705248598126865621648035367939850876} a^{12} - \frac{2231178738991803603521459464336774351336876507297}{92328538005452926312149531716405412008841984962719} a^{11} + \frac{16760861987170134604494341783050744857252802499642}{92328538005452926312149531716405412008841984962719} a^{10} - \frac{2416642608618618838152840735205178875083239608816}{92328538005452926312149531716405412008841984962719} a^{9} + \frac{8612707291741669798667899417175820237289135227075}{92328538005452926312149531716405412008841984962719} a^{8} + \frac{25718723590156081509874000762923021386971575750614}{92328538005452926312149531716405412008841984962719} a^{7} - \frac{159020744022581367126649607536331574162733083125761}{369314152021811705248598126865621648035367939850876} a^{6} - \frac{32357785467570991152005277600704897124492320499281}{184657076010905852624299063432810824017683969925438} a^{5} - \frac{165840309663946486389637630983734598374543449777683}{369314152021811705248598126865621648035367939850876} a^{4} + \frac{20733824093096679977885424527563482595302580258410}{92328538005452926312149531716405412008841984962719} a^{3} + \frac{76204016194430340135367328863104830134221297216419}{369314152021811705248598126865621648035367939850876} a^{2} - \frac{263318099769668868133526730310068947922049284385}{184657076010905852624299063432810824017683969925438} a - \frac{58457302547631289847597705105863598893510847607579}{369314152021811705248598126865621648035367939850876}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 442531383487000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 12000 |
| The 32 conjugacy class representatives for [1/2.F(5)^3]3 |
| Character table for [1/2.F(5)^3]3 is not computed |
Intermediate fields
| 3.3.169.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 30 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $15$ | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | $15$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{3}$ | $15$ | $15$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | $15$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.12.24.225 | $x^{12} - 12 x^{11} + 16 x^{10} - 4 x^{9} - 10 x^{8} + 16 x^{7} - 8 x^{4} - 8 x^{2} + 8$ | $4$ | $3$ | $24$ | 12T55 | $[2, 2, 3, 3]^{6}$ | |
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 5.4.3.4 | $x^{4} + 40$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 5.5.5.1 | $x^{5} + 20 x + 5$ | $5$ | $1$ | $5$ | $F_5$ | $[5/4]_{4}$ | |
| $13$ | 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| $151$ | $\Q_{151}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{151}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{151}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 151.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 151.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 151.4.2.2 | $x^{4} - 151 x^{2} + 273612$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 151.4.0.1 | $x^{4} - x + 6$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 3947 | Data not computed | ||||||
| 24181 | Data not computed | ||||||