Normalized defining polynomial
\( x^{15} - 2421 x^{13} - 4068 x^{12} + 1758834 x^{11} + 507384 x^{10} - 494319186 x^{9} + 707841504 x^{8} + 61398938061 x^{7} - 178724433528 x^{6} - 3229600555881 x^{5} + 12832994169828 x^{4} + 56100971904048 x^{3} - 290856136308192 x^{2} + 166203506461824 x + 332407012923648 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(183220640975323740990354036775850243373825724416=2^{12}\cdot 3^{20}\cdot 11^{6}\cdot 13^{2}\cdot 157^{6}\cdot 887^{2}\cdot 1907^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1415.35$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11, 13, 157, 887, 1907$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{3} a^{2}$, $\frac{1}{18} a^{3} - \frac{1}{2} a$, $\frac{1}{18} a^{4} - \frac{1}{6} a^{2}$, $\frac{1}{54} a^{5} - \frac{1}{2} a$, $\frac{1}{324} a^{6} + \frac{1}{12} a^{2}$, $\frac{1}{648} a^{7} - \frac{1}{648} a^{6} - \frac{1}{108} a^{5} - \frac{1}{36} a^{4} + \frac{1}{72} a^{3} + \frac{1}{24} a^{2} - \frac{1}{2} a$, $\frac{1}{1944} a^{8} - \frac{1}{648} a^{6} + \frac{1}{72} a^{4} - \frac{1}{24} a^{2}$, $\frac{1}{11664} a^{9} - \frac{1}{1296} a^{7} - \frac{1}{648} a^{6} - \frac{1}{144} a^{5} - \frac{1}{36} a^{4} + \frac{1}{144} a^{3} - \frac{1}{8} a^{2}$, $\frac{1}{11664} a^{10} - \frac{1}{3888} a^{8} - \frac{1}{1296} a^{6} - \frac{1}{144} a^{4} - \frac{1}{12} a^{2} - \frac{1}{2} a$, $\frac{1}{34992} a^{11} - \frac{1}{648} a^{6} - \frac{1}{108} a^{5} - \frac{1}{36} a^{4} + \frac{1}{144} a^{3} + \frac{1}{24} a^{2}$, $\frac{1}{209952} a^{12} - \frac{1}{3888} a^{8} - \frac{1}{108} a^{5} - \frac{1}{96} a^{4} - \frac{1}{36} a^{3}$, $\frac{1}{209952} a^{13} - \frac{1}{1296} a^{7} - \frac{1}{288} a^{5} - \frac{1}{36} a^{4} - \frac{1}{48} a^{3} + \frac{1}{12} a^{2}$, $\frac{1}{535773009317687838120096646007748392837081539141005778113570624} a^{14} + \frac{11198092105465435968984527892233195564269827873675686321}{11161937694118496627502013458494758184105865398770953710699388} a^{13} + \frac{48318113564516709284069709882089225534038777650986314775}{59530334368631982013344071778638710315231282126778419790396736} a^{12} - \frac{34616693688864547213197388101649240296577101198974686027}{14882583592157995503336017944659677578807820531694604947599184} a^{11} + \frac{69221873046475135669451301806527800680785648769970560845}{3307240798257332334074670654368817239735071229265467766133152} a^{10} - \frac{10590736159521455430405748321264313547378871342035453349}{826810199564333083518667663592204309933767807316366941533288} a^{9} - \frac{761486237811543314663119985997908367308695470399647711593}{3307240798257332334074670654368817239735071229265467766133152} a^{8} + \frac{91329652652755978551433942911791514583916698058915597}{68900849963694423626555638632683692494480650609697245127774} a^{7} - \frac{510752090656135685140003680814687617587916029520637050329}{2204827198838221556049780436245878159823380819510311844088768} a^{6} + \frac{377776925948867702113383711692653106800688812855652657143}{91867799951592564835407518176911589992640867479596326837032} a^{5} - \frac{561609224465268301301129425718669601996582154766405657999}{27220088874545945136417042422788619257078775549510022766528} a^{4} - \frac{570811510907497057998737049959784708975032122850455749887}{61245199967728376556938345451274393328427244986397551224688} a^{3} - \frac{126631510080768590973039533830954636186501684633021505675}{1701255554659121571026065151424288703567423471844376422908} a^{2} + \frac{66611796088533481677221160252548789232272838725531690864}{425313888664780392756516287856072175891855867961094105727} a + \frac{138738732286350072959598794986142323129713035177576034099}{425313888664780392756516287856072175891855867961094105727}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 14281982109800000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 29160 |
| The 48 conjugacy class representatives for 1/2[3^5:2]S(5) |
| Character table for 1/2[3^5:2]S(5) is not computed |
Intermediate fields
| 5.5.303952.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 15 siblings: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 45 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{3}$ | R | R | ${\href{/LocalNumberField/17.9.0.1}{9} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | $15$ | ${\href{/LocalNumberField/37.9.0.1}{9} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 3 | Data not computed | ||||||
| $11$ | 11.6.0.1 | $x^{6} + x^{2} - 2 x + 8$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 11.9.6.1 | $x^{9} - 121 x^{3} + 3993$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| $13$ | 13.3.2.1 | $x^{3} + 26$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 13.6.0.1 | $x^{6} + x^{2} - 2 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 13.6.0.1 | $x^{6} + x^{2} - 2 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $157$ | 157.3.0.1 | $x^{3} - x + 15$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 157.6.3.1 | $x^{6} - 314 x^{4} + 24649 x^{2} - 870725925$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 157.6.3.1 | $x^{6} - 314 x^{4} + 24649 x^{2} - 870725925$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 887 | Data not computed | ||||||
| 1907 | Data not computed | ||||||