Normalized defining polynomial
\( x^{15} - 676 x^{13} - 2038 x^{12} + 154340 x^{11} + 777118 x^{10} - 13426470 x^{9} - 81228726 x^{8} + 443602723 x^{7} + 3071208794 x^{6} - 3528834550 x^{5} - 35037744764 x^{4} - 10574547144 x^{3} + 113736612400 x^{2} + 132200896640 x + 34747476224 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(183165087243372408306736095370388796571648=2^{15}\cdot 11^{13}\cdot 61^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $563.45$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{4}$, $\frac{1}{8} a^{7} - \frac{1}{8} a^{6} - \frac{1}{8} a^{5} - \frac{1}{8} a^{4} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{8} + \frac{1}{8} a^{4} - \frac{1}{4} a^{2}$, $\frac{1}{32} a^{9} - \frac{1}{8} a^{6} + \frac{1}{32} a^{5} - \frac{1}{8} a^{4} + \frac{3}{16} a^{3} + \frac{1}{4} a^{2} - \frac{1}{4} a$, $\frac{1}{352} a^{10} + \frac{1}{352} a^{9} + \frac{5}{88} a^{7} + \frac{13}{352} a^{6} + \frac{37}{352} a^{5} + \frac{25}{176} a^{4} - \frac{9}{176} a^{3} - \frac{5}{44} a - \frac{1}{11}$, $\frac{1}{704} a^{11} - \frac{1}{704} a^{10} - \frac{1}{352} a^{9} + \frac{5}{176} a^{8} - \frac{27}{704} a^{7} - \frac{7}{64} a^{6} - \frac{3}{88} a^{5} + \frac{73}{352} a^{4} + \frac{9}{176} a^{3} + \frac{17}{88} a^{2} + \frac{3}{44} a + \frac{1}{11}$, $\frac{1}{297088} a^{12} - \frac{27}{74272} a^{11} - \frac{191}{297088} a^{10} - \frac{823}{148544} a^{9} - \frac{1573}{27008} a^{8} + \frac{3227}{74272} a^{7} + \frac{2253}{27008} a^{6} - \frac{511}{148544} a^{5} + \frac{33735}{148544} a^{4} + \frac{17607}{74272} a^{3} - \frac{1769}{37136} a^{2} - \frac{5627}{18568} a - \frac{1257}{4642}$, $\frac{1}{594176} a^{13} + \frac{383}{594176} a^{11} - \frac{47}{37136} a^{10} - \frac{107}{594176} a^{9} - \frac{111}{4642} a^{8} + \frac{18229}{594176} a^{7} - \frac{1183}{37136} a^{6} + \frac{10619}{297088} a^{5} - \frac{46}{2321} a^{4} + \frac{2251}{18568} a^{3} - \frac{7849}{18568} a^{2} + \frac{41}{88} a - \frac{569}{4642}$, $\frac{1}{131503099926884969868233529702084204620060294707311616} a^{14} + \frac{55084622179913705298119938590733119912691646451}{131503099926884969868233529702084204620060294707311616} a^{13} - \frac{73584516421965677350439105027560119775707765843}{131503099926884969868233529702084204620060294707311616} a^{12} - \frac{87820662014462325626729799170109185238478757699023}{131503099926884969868233529702084204620060294707311616} a^{11} + \frac{927651197871187832607426373887644042089423761043}{667528426024796801361591521330376673198275607651328} a^{10} + \frac{1606293331644139764588105157326888785980458069481179}{131503099926884969868233529702084204620060294707311616} a^{9} + \frac{4614534190840458124496637912048992667432501831458403}{131503099926884969868233529702084204620060294707311616} a^{8} - \frac{6583263264112749869093145514157913811419605099252045}{131503099926884969868233529702084204620060294707311616} a^{7} - \frac{4017470416905356067152500717198090072777487265232051}{32875774981721242467058382425521051155015073676827904} a^{6} - \frac{4546630346298666450579155793635755513174726897629165}{65751549963442484934116764851042102310030147353655808} a^{5} + \frac{5757008030076114655349443729338106253008388064430763}{32875774981721242467058382425521051155015073676827904} a^{4} + \frac{592056598891529351724633265205833909454127135303285}{16437887490860621233529191212760525577507536838413952} a^{3} - \frac{2720582439693661637375436896373751764574548029315825}{8218943745430310616764595606380262788753768419206976} a^{2} + \frac{265070825345578334748312354723074920951047682275303}{1027367968178788827095574450797532848594221052400872} a - \frac{255205410019560013083054175240264948602035602984923}{513683984089394413547787225398766424297110526200436}$
Class group and class number
$C_{5}$, which has order $5$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 784994314915144300 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_5\times S_3$ (as 15T4):
| A solvable group of order 30 |
| The 15 conjugacy class representatives for $S_3 \times C_5$ |
| Character table for $S_3 \times C_5$ |
Intermediate fields
| 3.3.5368.1, 5.5.202716958081.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $15$ | ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.5.0.1}{5} }$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }$ | R | $15$ | $15$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }$ | $15$ | $15$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }$ | $15$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }$ | $15$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| $11$ | 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |
| $61$ | 61.5.4.2 | $x^{5} + 122$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 61.10.9.4 | $x^{10} - 3904$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |