Normalized defining polynomial
\( x^{15} - 125 x^{13} - 141 x^{12} + 5239 x^{11} + 9555 x^{10} - 82199 x^{9} - 143988 x^{8} + 619723 x^{7} + 834353 x^{6} - 2429882 x^{5} - 2045407 x^{4} + 4765293 x^{3} + 1685099 x^{2} - 3684369 x + 257049 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1802470272605254011884574005361=3^{12}\cdot 13^{8}\cdot 401^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $104.01$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 13, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{13} a^{6} + \frac{5}{13} a^{4} + \frac{2}{13} a^{3}$, $\frac{1}{13} a^{7} + \frac{5}{13} a^{5} + \frac{2}{13} a^{4}$, $\frac{1}{13} a^{8} + \frac{2}{13} a^{5} + \frac{1}{13} a^{4} + \frac{3}{13} a^{3}$, $\frac{1}{169} a^{9} + \frac{5}{169} a^{7} + \frac{2}{169} a^{6} - \frac{2}{13} a^{5} + \frac{4}{13} a^{4} + \frac{4}{13} a^{3}$, $\frac{1}{338} a^{10} + \frac{5}{338} a^{8} + \frac{1}{169} a^{7} - \frac{1}{26} a^{6} - \frac{9}{26} a^{5} + \frac{9}{26} a^{4} + \frac{1}{13} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{1014} a^{11} - \frac{1}{1014} a^{10} - \frac{1}{338} a^{9} - \frac{1}{338} a^{8} - \frac{1}{338} a^{7} + \frac{6}{169} a^{6} + \frac{14}{39} a^{5} + \frac{29}{78} a^{4} - \frac{6}{13} a^{3} - \frac{1}{6} a^{2} - \frac{1}{3} a - \frac{1}{2}$, $\frac{1}{13182} a^{12} + \frac{5}{13182} a^{10} - \frac{4}{2197} a^{9} - \frac{5}{338} a^{8} + \frac{11}{338} a^{7} + \frac{1}{78} a^{6} + \frac{2}{13} a^{5} - \frac{2}{39} a^{4} - \frac{25}{78} a^{3} - \frac{1}{2} a^{2} - \frac{1}{3} a$, $\frac{1}{224094} a^{13} - \frac{1}{74698} a^{12} + \frac{5}{224094} a^{11} + \frac{5}{5746} a^{10} - \frac{15}{74698} a^{9} - \frac{63}{2873} a^{8} + \frac{107}{8619} a^{7} - \frac{61}{5746} a^{6} - \frac{14}{51} a^{5} - \frac{331}{1326} a^{4} + \frac{110}{221} a^{3} - \frac{41}{102} a^{2} + \frac{4}{17} a + \frac{3}{17}$, $\frac{1}{40073844505448721474} a^{14} - \frac{2950947103573}{40073844505448721474} a^{13} + \frac{307323929220391}{20036922252724360737} a^{12} + \frac{5219100947131583}{20036922252724360737} a^{11} + \frac{988695407669650}{742108231582383731} a^{10} - \frac{2540829300413587}{13357948168482907158} a^{9} + \frac{19896050448889081}{3082603423496055498} a^{8} - \frac{32874320730841087}{3082603423496055498} a^{7} + \frac{1857750326904770}{90664806573413397} a^{6} - \frac{6550522637420930}{13173518903829297} a^{5} + \frac{56229996647742896}{118561670134463673} a^{4} - \frac{2136354126487702}{9120128471881821} a^{3} + \frac{65410677449123}{396527324864427} a^{2} - \frac{2198758005437263}{6080085647921214} a - \frac{221597479105927}{1013347607986869}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 42648761950.9 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 810 |
| The 24 conjugacy class representatives for [3^4]D(5) |
| Character table for [3^4]D(5) is not computed |
Intermediate fields
| 5.5.160801.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 15 siblings: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 45 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{3}$ | R | ${\href{/LocalNumberField/5.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{3}$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.3.4.2 | $x^{3} - 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| 3.6.8.9 | $x^{6} + 6 x^{5} + 9$ | $3$ | $2$ | $8$ | $S_3\times C_3$ | $[2, 2]^{2}$ | |
| $13$ | 13.3.0.1 | $x^{3} - 2 x + 6$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 13.6.4.2 | $x^{6} - 13 x^{3} + 338$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 401 | Data not computed | ||||||