Properties

Label 15.15.1690450042...8125.1
Degree $15$
Signature $[15, 0]$
Discriminant $3^{28}\cdot 5^{11}\cdot 73^{6}$
Root discriminant $140.78$
Ramified primes $3, 5, 73$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 15T61

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-28125, -6750, 131625, 60525, -193050, -108675, 112350, 71100, -24975, -17780, 2145, 1845, -50, -75, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^15 - 75*x^13 - 50*x^12 + 1845*x^11 + 2145*x^10 - 17780*x^9 - 24975*x^8 + 71100*x^7 + 112350*x^6 - 108675*x^5 - 193050*x^4 + 60525*x^3 + 131625*x^2 - 6750*x - 28125)
 
gp: K = bnfinit(x^15 - 75*x^13 - 50*x^12 + 1845*x^11 + 2145*x^10 - 17780*x^9 - 24975*x^8 + 71100*x^7 + 112350*x^6 - 108675*x^5 - 193050*x^4 + 60525*x^3 + 131625*x^2 - 6750*x - 28125, 1)
 

Normalized defining polynomial

\( x^{15} - 75 x^{13} - 50 x^{12} + 1845 x^{11} + 2145 x^{10} - 17780 x^{9} - 24975 x^{8} + 71100 x^{7} + 112350 x^{6} - 108675 x^{5} - 193050 x^{4} + 60525 x^{3} + 131625 x^{2} - 6750 x - 28125 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $15$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[15, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(169045004206325967513170361328125=3^{28}\cdot 5^{11}\cdot 73^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $140.78$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 5, 73$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{5} a^{6}$, $\frac{1}{5} a^{7}$, $\frac{1}{5} a^{8}$, $\frac{1}{5} a^{9}$, $\frac{1}{5} a^{10}$, $\frac{1}{15} a^{11} + \frac{1}{15} a^{8} - \frac{1}{3} a^{5}$, $\frac{1}{75} a^{12} - \frac{1}{15} a^{9} - \frac{1}{15} a^{6}$, $\frac{1}{75} a^{13} - \frac{1}{15} a^{10} - \frac{1}{15} a^{7}$, $\frac{1}{26338353954289279125} a^{14} + \frac{6713554420149574}{1053534158171571165} a^{13} + \frac{5759802218039927}{5267670790857855825} a^{12} - \frac{3854264662519583}{1053534158171571165} a^{11} - \frac{21236351727653972}{229029164819906775} a^{10} - \frac{141399281195575321}{5267670790857855825} a^{9} - \frac{360883722236662471}{5267670790857855825} a^{8} + \frac{72129062365376266}{1053534158171571165} a^{7} - \frac{82160757886796246}{1053534158171571165} a^{6} - \frac{19881144211208972}{351178052723857055} a^{5} - \frac{125166167654476594}{351178052723857055} a^{4} + \frac{152160418308261216}{351178052723857055} a^{3} + \frac{116787710608494842}{351178052723857055} a^{2} - \frac{400261875513608}{3053722197598757} a + \frac{15470139471399362}{70235610544771411}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $14$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 579544752558 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

15T61:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 9720
The 24 conjugacy class representatives for [3^4:2]A(5)
Character table for [3^4:2]A(5) is not computed

Intermediate fields

5.5.10791225.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 30 siblings: data not computed
Degree 45 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.10.0.1}{10} }{,}\,{\href{/LocalNumberField/2.5.0.1}{5} }$ R R ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }$ ${\href{/LocalNumberField/11.5.0.1}{5} }^{3}$ ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }$ ${\href{/LocalNumberField/19.5.0.1}{5} }^{3}$ ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ ${\href{/LocalNumberField/29.5.0.1}{5} }^{3}$ ${\href{/LocalNumberField/31.9.0.1}{9} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/41.9.0.1}{9} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }$ ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }$ ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.6.9.16$x^{6} + 3 x^{4} + 6 x^{3} + 3$$6$$1$$9$$S_3^2$$[3/2, 2]_{2}^{2}$
3.9.19.42$x^{9} + 18 x^{5} + 18 x^{4} + 3 x^{3} + 18 x^{2} + 6$$9$$1$$19$$((C_3^3:C_3):C_2):C_2$$[3/2, 2, 5/2, 8/3]_{2}^{2}$
$5$$\Q_{5}$$x + 2$$1$$1$$0$Trivial$[\ ]$
5.2.1.1$x^{2} - 5$$2$$1$$1$$C_2$$[\ ]_{2}$
5.12.10.2$x^{12} + 15 x^{6} + 100$$6$$2$$10$$C_6\times S_3$$[\ ]_{6}^{6}$
$73$$\Q_{73}$$x + 5$$1$$1$$0$Trivial$[\ ]$
$\Q_{73}$$x + 5$$1$$1$$0$Trivial$[\ ]$
73.2.0.1$x^{2} - x + 11$$1$$2$$0$$C_2$$[\ ]^{2}$
73.2.0.1$x^{2} - x + 11$$1$$2$$0$$C_2$$[\ ]^{2}$
73.3.2.3$x^{3} - 1825$$3$$1$$2$$C_3$$[\ ]_{3}$
73.6.4.2$x^{6} - 73 x^{3} + 58619$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$