Normalized defining polynomial
\( x^{15} - 5 x^{14} - 30 x^{13} + 150 x^{12} + 305 x^{11} - 1539 x^{10} - 1350 x^{9} + 6825 x^{8} + 3115 x^{7} - 13645 x^{6} - 4757 x^{5} + 11735 x^{4} + 3765 x^{3} - 3500 x^{2} - 770 x + 301 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(16836836874485015869140625=5^{24}\cdot 7^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $48.06$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(175=5^{2}\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{175}(1,·)$, $\chi_{175}(36,·)$, $\chi_{175}(71,·)$, $\chi_{175}(106,·)$, $\chi_{175}(11,·)$, $\chi_{175}(141,·)$, $\chi_{175}(46,·)$, $\chi_{175}(16,·)$, $\chi_{175}(81,·)$, $\chi_{175}(51,·)$, $\chi_{175}(116,·)$, $\chi_{175}(86,·)$, $\chi_{175}(151,·)$, $\chi_{175}(121,·)$, $\chi_{175}(156,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{7} a^{12} + \frac{1}{7} a^{11} - \frac{1}{7} a^{10} + \frac{3}{7} a^{8} - \frac{3}{7} a^{7} + \frac{3}{7} a^{6} + \frac{1}{7} a^{5} + \frac{2}{7} a^{4} + \frac{1}{7} a^{3}$, $\frac{1}{49} a^{13} - \frac{1}{49} a^{12} - \frac{3}{49} a^{11} + \frac{16}{49} a^{10} - \frac{11}{49} a^{9} - \frac{16}{49} a^{8} + \frac{9}{49} a^{7} + \frac{16}{49} a^{6} + \frac{1}{7} a^{5} - \frac{17}{49} a^{4} + \frac{5}{49} a^{3} + \frac{3}{7} a^{2} - \frac{1}{7} a + \frac{2}{7}$, $\frac{1}{7659219376252355849} a^{14} - \frac{40518519814687833}{7659219376252355849} a^{13} + \frac{74267797811977264}{7659219376252355849} a^{12} - \frac{3084242977174696220}{7659219376252355849} a^{11} + \frac{1731699461148162129}{7659219376252355849} a^{10} + \frac{2912998882946688307}{7659219376252355849} a^{9} - \frac{2154574297594152885}{7659219376252355849} a^{8} - \frac{28034412114270276}{156310599515354201} a^{7} - \frac{3083603310104332976}{7659219376252355849} a^{6} - \frac{3533884455897250815}{7659219376252355849} a^{5} + \frac{2849789317377109395}{7659219376252355849} a^{4} - \frac{763865364125619810}{7659219376252355849} a^{3} - \frac{254537904435646276}{1094174196607479407} a^{2} - \frac{124348582994085482}{1094174196607479407} a - \frac{8846912733002633}{25445911549011149}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 87241496.8826 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 15 |
| The 15 conjugacy class representatives for $C_{15}$ |
| Character table for $C_{15}$ |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 5.5.390625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $15$ | $15$ | R | R | $15$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{3}$ | $15$ | $15$ | $15$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{3}$ | $15$ | $15$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{15}$ | $15$ | $15$ | $15$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $7$ | 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |