Properties

Label 15.15.158...721.1
Degree $15$
Signature $[15, 0]$
Discriminant $1.586\times 10^{39}$
Root discriminant \(410.54\)
Ramified prime $631$
Class number $11$ (GRH)
Class group [11] (GRH)
Galois group $C_{15}$ (as 15T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^15 - x^14 - 294*x^13 + 127*x^12 + 29253*x^11 - 353*x^10 - 1219824*x^9 - 638978*x^8 + 22372090*x^7 + 22528734*x^6 - 165257997*x^5 - 237407410*x^4 + 304223819*x^3 + 487995784*x^2 - 67361473*x - 110965429)
 
Copy content gp:K = bnfinit(y^15 - y^14 - 294*y^13 + 127*y^12 + 29253*y^11 - 353*y^10 - 1219824*y^9 - 638978*y^8 + 22372090*y^7 + 22528734*y^6 - 165257997*y^5 - 237407410*y^4 + 304223819*y^3 + 487995784*y^2 - 67361473*y - 110965429, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^15 - x^14 - 294*x^13 + 127*x^12 + 29253*x^11 - 353*x^10 - 1219824*x^9 - 638978*x^8 + 22372090*x^7 + 22528734*x^6 - 165257997*x^5 - 237407410*x^4 + 304223819*x^3 + 487995784*x^2 - 67361473*x - 110965429);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^15 - x^14 - 294*x^13 + 127*x^12 + 29253*x^11 - 353*x^10 - 1219824*x^9 - 638978*x^8 + 22372090*x^7 + 22528734*x^6 - 165257997*x^5 - 237407410*x^4 + 304223819*x^3 + 487995784*x^2 - 67361473*x - 110965429)
 

\( x^{15} - x^{14} - 294 x^{13} + 127 x^{12} + 29253 x^{11} - 353 x^{10} - 1219824 x^{9} - 638978 x^{8} + \cdots - 110965429 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $15$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[15, 0]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(1586393893300992738237335763411468444721\) \(\medspace = 631^{14}\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(410.54\)
Copy content comment:Root discriminant
 
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:OK = ring_of_integers(K); (1.0 * abs(discriminant(OK)))^(1/degree(K))
 
Galois root discriminant:  $631^{14/15}\approx 410.5449697876061$
Ramified primes:   \(631\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant(OK))
 
Discriminant root field:  \(\Q\)
$\Aut(K/\Q)$ $=$ $\Gal(K/\Q)$:   $C_{15}$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(631\)
Dirichlet character group:    $\lbrace$$\chi_{631}(64,·)$, $\chi_{631}(1,·)$, $\chi_{631}(43,·)$, $\chi_{631}(228,·)$, $\chi_{631}(310,·)$, $\chi_{631}(8,·)$, $\chi_{631}(587,·)$, $\chi_{631}(242,·)$, $\chi_{631}(79,·)$, $\chi_{631}(562,·)$, $\chi_{631}(339,·)$, $\chi_{631}(512,·)$, $\chi_{631}(279,·)$, $\chi_{631}(344,·)$, $\chi_{631}(188,·)$$\rbrace$
This is not a CM field.
This field has no CM subfields.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{12599}a^{13}-\frac{2806}{12599}a^{12}-\frac{3292}{12599}a^{11}+\frac{1316}{12599}a^{10}+\frac{5115}{12599}a^{9}+\frac{94}{293}a^{8}+\frac{4496}{12599}a^{7}-\frac{2560}{12599}a^{6}-\frac{1857}{12599}a^{5}+\frac{5389}{12599}a^{4}-\frac{2118}{12599}a^{3}+\frac{2025}{12599}a^{2}-\frac{1648}{12599}a-\frac{3513}{12599}$, $\frac{1}{53\cdots 93}a^{14}+\frac{11\cdots 96}{53\cdots 93}a^{13}+\frac{15\cdots 35}{53\cdots 93}a^{12}+\frac{18\cdots 80}{53\cdots 93}a^{11}+\frac{11\cdots 23}{53\cdots 93}a^{10}+\frac{66\cdots 79}{53\cdots 93}a^{9}-\frac{12\cdots 18}{53\cdots 93}a^{8}+\frac{18\cdots 03}{53\cdots 93}a^{7}+\frac{25\cdots 62}{53\cdots 93}a^{6}+\frac{18\cdots 93}{53\cdots 93}a^{5}+\frac{12\cdots 10}{53\cdots 93}a^{4}-\frac{42\cdots 11}{53\cdots 93}a^{3}+\frac{16\cdots 19}{53\cdots 93}a^{2}-\frac{24\cdots 90}{53\cdots 93}a-\frac{21\cdots 50}{53\cdots 93}$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Ideal class group:  $C_{11}$, which has order $11$ (assuming GRH)
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  $C_{11}$, which has order $11$ (assuming GRH)
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $14$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   $\frac{10\cdots 95}{26\cdots 03}a^{14}-\frac{72\cdots 37}{26\cdots 03}a^{13}-\frac{42\cdots 58}{26\cdots 03}a^{12}+\frac{20\cdots 57}{26\cdots 03}a^{11}+\frac{71\cdots 59}{26\cdots 03}a^{10}-\frac{18\cdots 39}{26\cdots 03}a^{9}-\frac{54\cdots 39}{26\cdots 03}a^{8}+\frac{63\cdots 96}{26\cdots 03}a^{7}+\frac{19\cdots 38}{26\cdots 03}a^{6}-\frac{70\cdots 77}{26\cdots 03}a^{5}-\frac{23\cdots 32}{26\cdots 03}a^{4}+\frac{12\cdots 30}{26\cdots 03}a^{3}+\frac{51\cdots 52}{26\cdots 03}a^{2}-\frac{12\cdots 44}{26\cdots 03}a-\frac{11\cdots 21}{26\cdots 03}$, $\frac{10\cdots 65}{26\cdots 03}a^{14}+\frac{11\cdots 74}{26\cdots 03}a^{13}-\frac{27\cdots 06}{26\cdots 03}a^{12}-\frac{33\cdots 19}{26\cdots 03}a^{11}+\frac{22\cdots 40}{26\cdots 03}a^{10}+\frac{31\cdots 46}{26\cdots 03}a^{9}-\frac{52\cdots 68}{26\cdots 03}a^{8}-\frac{11\cdots 70}{26\cdots 03}a^{7}-\frac{61\cdots 04}{26\cdots 03}a^{6}+\frac{15\cdots 37}{26\cdots 03}a^{5}+\frac{20\cdots 32}{26\cdots 03}a^{4}-\frac{56\cdots 77}{26\cdots 03}a^{3}-\frac{67\cdots 89}{26\cdots 03}a^{2}+\frac{68\cdots 50}{26\cdots 03}a+\frac{58\cdots 99}{26\cdots 03}$, $\frac{20\cdots 28}{26\cdots 03}a^{14}-\frac{57\cdots 27}{26\cdots 03}a^{13}-\frac{13\cdots 17}{26\cdots 03}a^{12}+\frac{16\cdots 05}{26\cdots 03}a^{11}+\frac{36\cdots 72}{26\cdots 03}a^{10}-\frac{14\cdots 00}{26\cdots 03}a^{9}-\frac{34\cdots 42}{26\cdots 03}a^{8}+\frac{51\cdots 18}{26\cdots 03}a^{7}+\frac{13\cdots 29}{26\cdots 03}a^{6}-\frac{58\cdots 23}{26\cdots 03}a^{5}-\frac{16\cdots 07}{26\cdots 03}a^{4}+\frac{11\cdots 60}{26\cdots 03}a^{3}+\frac{36\cdots 68}{26\cdots 03}a^{2}-\frac{13\cdots 49}{26\cdots 03}a-\frac{89\cdots 16}{26\cdots 03}$, $\frac{21\cdots 60}{26\cdots 03}a^{14}-\frac{61\cdots 63}{26\cdots 03}a^{13}-\frac{70\cdots 64}{26\cdots 03}a^{12}+\frac{17\cdots 38}{26\cdots 03}a^{11}+\frac{93\cdots 99}{26\cdots 03}a^{10}-\frac{15\cdots 93}{26\cdots 03}a^{9}-\frac{60\cdots 07}{26\cdots 03}a^{8}+\frac{51\cdots 26}{26\cdots 03}a^{7}+\frac{18\cdots 34}{26\cdots 03}a^{6}-\frac{55\cdots 40}{26\cdots 03}a^{5}-\frac{21\cdots 00}{26\cdots 03}a^{4}+\frac{65\cdots 53}{26\cdots 03}a^{3}+\frac{44\cdots 63}{26\cdots 03}a^{2}+\frac{56\cdots 06}{26\cdots 03}a-\frac{63\cdots 34}{26\cdots 03}$, $\frac{53\cdots 55}{53\cdots 93}a^{14}+\frac{16\cdots 74}{53\cdots 93}a^{13}-\frac{14\cdots 29}{53\cdots 93}a^{12}-\frac{55\cdots 25}{53\cdots 93}a^{11}+\frac{13\cdots 31}{53\cdots 93}a^{10}+\frac{54\cdots 43}{53\cdots 93}a^{9}-\frac{42\cdots 03}{53\cdots 93}a^{8}-\frac{20\cdots 85}{53\cdots 93}a^{7}+\frac{32\cdots 10}{53\cdots 93}a^{6}+\frac{25\cdots 61}{53\cdots 93}a^{5}+\frac{16\cdots 17}{53\cdots 93}a^{4}-\frac{53\cdots 97}{53\cdots 93}a^{3}-\frac{58\cdots 09}{53\cdots 93}a^{2}+\frac{13\cdots 83}{53\cdots 93}a+\frac{13\cdots 53}{53\cdots 93}$, $\frac{80\cdots 77}{53\cdots 93}a^{14}-\frac{30\cdots 17}{53\cdots 93}a^{13}-\frac{24\cdots 51}{53\cdots 93}a^{12}+\frac{74\cdots 84}{53\cdots 93}a^{11}+\frac{25\cdots 63}{53\cdots 93}a^{10}-\frac{59\cdots 60}{53\cdots 93}a^{9}-\frac{11\cdots 48}{53\cdots 93}a^{8}+\frac{15\cdots 37}{53\cdots 93}a^{7}+\frac{24\cdots 01}{53\cdots 93}a^{6}-\frac{57\cdots 52}{53\cdots 93}a^{5}-\frac{22\cdots 43}{53\cdots 93}a^{4}-\frac{14\cdots 69}{53\cdots 93}a^{3}+\frac{50\cdots 53}{53\cdots 93}a^{2}+\frac{34\cdots 80}{53\cdots 93}a-\frac{27\cdots 93}{53\cdots 93}$, $\frac{52\cdots 10}{53\cdots 93}a^{14}+\frac{22\cdots 37}{53\cdots 93}a^{13}+\frac{31\cdots 31}{53\cdots 93}a^{12}-\frac{64\cdots 16}{53\cdots 93}a^{11}-\frac{12\cdots 87}{53\cdots 93}a^{10}+\frac{58\cdots 54}{53\cdots 93}a^{9}+\frac{13\cdots 44}{53\cdots 93}a^{8}-\frac{20\cdots 89}{53\cdots 93}a^{7}-\frac{55\cdots 06}{53\cdots 93}a^{6}+\frac{23\cdots 72}{53\cdots 93}a^{5}+\frac{69\cdots 33}{53\cdots 93}a^{4}-\frac{43\cdots 72}{53\cdots 93}a^{3}-\frac{15\cdots 59}{53\cdots 93}a^{2}+\frac{95\cdots 53}{53\cdots 93}a+\frac{36\cdots 36}{53\cdots 93}$, $\frac{20\cdots 68}{53\cdots 93}a^{14}+\frac{65\cdots 74}{53\cdots 93}a^{13}-\frac{57\cdots 20}{53\cdots 93}a^{12}-\frac{21\cdots 79}{53\cdots 93}a^{11}+\frac{50\cdots 51}{53\cdots 93}a^{10}+\frac{21\cdots 70}{53\cdots 93}a^{9}-\frac{16\cdots 52}{53\cdots 93}a^{8}-\frac{81\cdots 14}{53\cdots 93}a^{7}+\frac{12\cdots 58}{53\cdots 93}a^{6}+\frac{99\cdots 31}{53\cdots 93}a^{5}+\frac{68\cdots 03}{53\cdots 93}a^{4}-\frac{21\cdots 65}{53\cdots 93}a^{3}-\frac{23\cdots 10}{53\cdots 93}a^{2}+\frac{60\cdots 63}{53\cdots 93}a+\frac{63\cdots 07}{53\cdots 93}$, $\frac{37\cdots 35}{53\cdots 93}a^{14}-\frac{19\cdots 96}{12\cdots 51}a^{13}-\frac{10\cdots 11}{53\cdots 93}a^{12}+\frac{18\cdots 92}{53\cdots 93}a^{11}+\frac{10\cdots 23}{53\cdots 93}a^{10}-\frac{14\cdots 77}{53\cdots 93}a^{9}-\frac{42\cdots 75}{53\cdots 93}a^{8}+\frac{39\cdots 16}{53\cdots 93}a^{7}+\frac{73\cdots 87}{53\cdots 93}a^{6}-\frac{42\cdots 39}{53\cdots 93}a^{5}-\frac{50\cdots 79}{53\cdots 93}a^{4}+\frac{13\cdots 85}{53\cdots 93}a^{3}+\frac{10\cdots 51}{53\cdots 93}a^{2}-\frac{25\cdots 95}{53\cdots 93}a-\frac{34\cdots 89}{53\cdots 93}$, $\frac{54\cdots 74}{53\cdots 93}a^{14}-\frac{15\cdots 77}{53\cdots 93}a^{13}-\frac{15\cdots 19}{53\cdots 93}a^{12}+\frac{36\cdots 66}{53\cdots 93}a^{11}+\frac{15\cdots 87}{53\cdots 93}a^{10}-\frac{28\cdots 81}{53\cdots 93}a^{9}-\frac{60\cdots 90}{53\cdots 93}a^{8}+\frac{78\cdots 22}{53\cdots 93}a^{7}+\frac{10\cdots 43}{53\cdots 93}a^{6}-\frac{76\cdots 42}{53\cdots 93}a^{5}-\frac{75\cdots 78}{53\cdots 93}a^{4}+\frac{11\cdots 75}{53\cdots 93}a^{3}+\frac{33\cdots 01}{12\cdots 51}a^{2}-\frac{23\cdots 90}{53\cdots 93}a-\frac{32\cdots 38}{53\cdots 93}$, $\frac{57\cdots 35}{53\cdots 93}a^{14}-\frac{15\cdots 76}{53\cdots 93}a^{13}-\frac{16\cdots 25}{53\cdots 93}a^{12}+\frac{34\cdots 02}{53\cdots 93}a^{11}+\frac{16\cdots 80}{53\cdots 93}a^{10}-\frac{27\cdots 53}{53\cdots 93}a^{9}-\frac{64\cdots 04}{53\cdots 93}a^{8}+\frac{72\cdots 21}{53\cdots 93}a^{7}+\frac{11\cdots 60}{53\cdots 93}a^{6}-\frac{65\cdots 74}{53\cdots 93}a^{5}-\frac{82\cdots 01}{53\cdots 93}a^{4}+\frac{57\cdots 53}{53\cdots 93}a^{3}+\frac{16\cdots 37}{53\cdots 93}a^{2}-\frac{29\cdots 80}{53\cdots 93}a-\frac{36\cdots 09}{53\cdots 93}$, $\frac{64\cdots 63}{53\cdots 93}a^{14}-\frac{14\cdots 84}{53\cdots 93}a^{13}-\frac{18\cdots 71}{53\cdots 93}a^{12}+\frac{32\cdots 33}{53\cdots 93}a^{11}+\frac{18\cdots 77}{53\cdots 93}a^{10}-\frac{25\cdots 90}{53\cdots 93}a^{9}-\frac{79\cdots 49}{53\cdots 93}a^{8}+\frac{68\cdots 96}{53\cdots 93}a^{7}+\frac{15\cdots 94}{53\cdots 93}a^{6}-\frac{59\cdots 01}{53\cdots 93}a^{5}-\frac{11\cdots 71}{53\cdots 93}a^{4}-\frac{25\cdots 96}{53\cdots 93}a^{3}+\frac{24\cdots 54}{53\cdots 93}a^{2}+\frac{13\cdots 01}{53\cdots 93}a-\frac{54\cdots 96}{53\cdots 93}$, $\frac{76\cdots 04}{53\cdots 93}a^{14}+\frac{22\cdots 21}{53\cdots 93}a^{13}-\frac{21\cdots 42}{53\cdots 93}a^{12}-\frac{75\cdots 00}{53\cdots 93}a^{11}+\frac{18\cdots 98}{53\cdots 93}a^{10}+\frac{74\cdots 33}{53\cdots 93}a^{9}-\frac{57\cdots 65}{53\cdots 93}a^{8}-\frac{27\cdots 66}{53\cdots 93}a^{7}+\frac{39\cdots 27}{53\cdots 93}a^{6}+\frac{31\cdots 60}{53\cdots 93}a^{5}+\frac{27\cdots 56}{53\cdots 93}a^{4}-\frac{39\cdots 23}{53\cdots 93}a^{3}-\frac{33\cdots 60}{53\cdots 93}a^{2}+\frac{27\cdots 89}{53\cdots 93}a+\frac{11\cdots 55}{53\cdots 93}$, $\frac{99\cdots 22}{12\cdots 51}a^{14}-\frac{57\cdots 39}{53\cdots 93}a^{13}-\frac{12\cdots 94}{53\cdots 93}a^{12}+\frac{96\cdots 59}{53\cdots 93}a^{11}+\frac{12\cdots 69}{53\cdots 93}a^{10}-\frac{41\cdots 76}{53\cdots 93}a^{9}-\frac{11\cdots 91}{12\cdots 51}a^{8}-\frac{11\cdots 58}{53\cdots 93}a^{7}+\frac{82\cdots 28}{53\cdots 93}a^{6}+\frac{65\cdots 21}{53\cdots 93}a^{5}-\frac{49\cdots 03}{53\cdots 93}a^{4}-\frac{67\cdots 89}{53\cdots 93}a^{3}+\frac{10\cdots 33}{53\cdots 93}a^{2}+\frac{15\cdots 44}{53\cdots 93}a+\frac{10\cdots 98}{53\cdots 93}$ Copy content Toggle raw display (assuming GRH)
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 40655123886363.37 \) (assuming GRH)
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{15}\cdot(2\pi)^{0}\cdot 40655123886363.37 \cdot 11}{2\cdot\sqrt{1586393893300992738237335763411468444721}}\cr\approx \mathstrut & 0.183959575421441 \end{aligned}\] (assuming GRH)

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^15 - x^14 - 294*x^13 + 127*x^12 + 29253*x^11 - 353*x^10 - 1219824*x^9 - 638978*x^8 + 22372090*x^7 + 22528734*x^6 - 165257997*x^5 - 237407410*x^4 + 304223819*x^3 + 487995784*x^2 - 67361473*x - 110965429) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^15 - x^14 - 294*x^13 + 127*x^12 + 29253*x^11 - 353*x^10 - 1219824*x^9 - 638978*x^8 + 22372090*x^7 + 22528734*x^6 - 165257997*x^5 - 237407410*x^4 + 304223819*x^3 + 487995784*x^2 - 67361473*x - 110965429, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^15 - x^14 - 294*x^13 + 127*x^12 + 29253*x^11 - 353*x^10 - 1219824*x^9 - 638978*x^8 + 22372090*x^7 + 22528734*x^6 - 165257997*x^5 - 237407410*x^4 + 304223819*x^3 + 487995784*x^2 - 67361473*x - 110965429); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = polynomial_ring(QQ); K, a = number_field(x^15 - x^14 - 294*x^13 + 127*x^12 + 29253*x^11 - 353*x^10 - 1219824*x^9 - 638978*x^8 + 22372090*x^7 + 22528734*x^6 - 165257997*x^5 - 237407410*x^4 + 304223819*x^3 + 487995784*x^2 - 67361473*x - 110965429); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{15}$ (as 15T1):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); degree(K) > 1 ? (G, transitive_group_identification(G)) : (G, nothing)
 
A cyclic group of order 15
The 15 conjugacy class representatives for $C_{15}$
Character table for $C_{15}$

Intermediate fields

3.3.398161.1, 5.5.158532181921.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(L)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $15$ $15$ ${\href{/padicField/5.5.0.1}{5} }^{3}$ $15$ $15$ $15$ $15$ $15$ $15$ $15$ $15$ ${\href{/padicField/37.3.0.1}{3} }^{5}$ ${\href{/padicField/41.3.0.1}{3} }^{5}$ ${\href{/padicField/43.1.0.1}{1} }^{15}$ $15$ $15$ $15$

Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(631\) Copy content Toggle raw display Deg $15$$15$$1$$14$

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)