Normalized defining polynomial
\( x^{15} - x^{14} - 294 x^{13} + 127 x^{12} + 29253 x^{11} - 353 x^{10} - 1219824 x^{9} - 638978 x^{8} + 22372090 x^{7} + 22528734 x^{6} - 165257997 x^{5} - 237407410 x^{4} + 304223819 x^{3} + 487995784 x^{2} - 67361473 x - 110965429 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1586393893300992738237335763411468444721=631^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $410.54$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $631$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(631\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{631}(64,·)$, $\chi_{631}(1,·)$, $\chi_{631}(43,·)$, $\chi_{631}(228,·)$, $\chi_{631}(310,·)$, $\chi_{631}(8,·)$, $\chi_{631}(587,·)$, $\chi_{631}(242,·)$, $\chi_{631}(79,·)$, $\chi_{631}(562,·)$, $\chi_{631}(339,·)$, $\chi_{631}(512,·)$, $\chi_{631}(279,·)$, $\chi_{631}(344,·)$, $\chi_{631}(188,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{12599} a^{13} - \frac{2806}{12599} a^{12} - \frac{3292}{12599} a^{11} + \frac{1316}{12599} a^{10} + \frac{5115}{12599} a^{9} + \frac{94}{293} a^{8} + \frac{4496}{12599} a^{7} - \frac{2560}{12599} a^{6} - \frac{1857}{12599} a^{5} + \frac{5389}{12599} a^{4} - \frac{2118}{12599} a^{3} + \frac{2025}{12599} a^{2} - \frac{1648}{12599} a - \frac{3513}{12599}$, $\frac{1}{53512925189422502830963760774322648940574166656276593} a^{14} + \frac{118592812541805878405211305013210867429287520296}{53512925189422502830963760774322648940574166656276593} a^{13} + \frac{1591869520984156712396857367207228947820581220606535}{53512925189422502830963760774322648940574166656276593} a^{12} + \frac{18614673280162605575398937865824954375218765139179680}{53512925189422502830963760774322648940574166656276593} a^{11} + \frac{11477296889761020790999442316667576156688463530257523}{53512925189422502830963760774322648940574166656276593} a^{10} + \frac{6642148656507797175811235245530971219664241029373179}{53512925189422502830963760774322648940574166656276593} a^{9} - \frac{1287808107918947560166372516343332287101172407253318}{53512925189422502830963760774322648940574166656276593} a^{8} + \frac{1812254686439872189276857899658290725277687298488003}{53512925189422502830963760774322648940574166656276593} a^{7} + \frac{25993020611356930659661535697237170062356856682946762}{53512925189422502830963760774322648940574166656276593} a^{6} + \frac{1871254091810630290583099028992667167047801650912293}{53512925189422502830963760774322648940574166656276593} a^{5} + \frac{12964360386676446536279720515349186314414191634560810}{53512925189422502830963760774322648940574166656276593} a^{4} - \frac{4236399140608327441522213045225232747219746732455111}{53512925189422502830963760774322648940574166656276593} a^{3} + \frac{16281377050449914589279669049821422906026174067154519}{53512925189422502830963760774322648940574166656276593} a^{2} - \frac{24421946156330185622801142929883921830623905540688990}{53512925189422502830963760774322648940574166656276593} a - \frac{21686842058959925087239452852101286176949079677881750}{53512925189422502830963760774322648940574166656276593}$
Class group and class number
$C_{11}$, which has order $11$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 40655123886363.37 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 15 |
| The 15 conjugacy class representatives for $C_{15}$ |
| Character table for $C_{15}$ |
Intermediate fields
| 3.3.398161.1, 5.5.158532181921.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $15$ | $15$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{3}$ | $15$ | $15$ | $15$ | $15$ | $15$ | $15$ | $15$ | $15$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{15}$ | $15$ | $15$ | $15$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 631 | Data not computed | ||||||