Properties

Label 15.15.1573247311...4496.3
Degree $15$
Signature $[15, 0]$
Discriminant $2^{14}\cdot 67^{6}\cdot 101^{6}$
Root discriminant $65.03$
Ramified primes $2, 67, 101$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $\GL(2,4):C_2$ (as 15T21)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![139, 985, 1945, -1483, -9401, -7671, 6549, 9621, -1347, -4109, 125, 691, 5, -47, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^15 - x^14 - 47*x^13 + 5*x^12 + 691*x^11 + 125*x^10 - 4109*x^9 - 1347*x^8 + 9621*x^7 + 6549*x^6 - 7671*x^5 - 9401*x^4 - 1483*x^3 + 1945*x^2 + 985*x + 139)
 
gp: K = bnfinit(x^15 - x^14 - 47*x^13 + 5*x^12 + 691*x^11 + 125*x^10 - 4109*x^9 - 1347*x^8 + 9621*x^7 + 6549*x^6 - 7671*x^5 - 9401*x^4 - 1483*x^3 + 1945*x^2 + 985*x + 139, 1)
 

Normalized defining polynomial

\( x^{15} - x^{14} - 47 x^{13} + 5 x^{12} + 691 x^{11} + 125 x^{10} - 4109 x^{9} - 1347 x^{8} + 9621 x^{7} + 6549 x^{6} - 7671 x^{5} - 9401 x^{4} - 1483 x^{3} + 1945 x^{2} + 985 x + 139 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $15$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[15, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(1573247311268408410661994496=2^{14}\cdot 67^{6}\cdot 101^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $65.03$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 67, 101$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{39237596887} a^{14} + \frac{14656969164}{39237596887} a^{13} - \frac{18048797891}{39237596887} a^{12} - \frac{6897178215}{39237596887} a^{11} - \frac{8225454115}{39237596887} a^{10} - \frac{10038537907}{39237596887} a^{9} + \frac{4321305074}{39237596887} a^{8} - \frac{12675588868}{39237596887} a^{7} - \frac{17381012527}{39237596887} a^{6} + \frac{19146325249}{39237596887} a^{5} + \frac{9459336290}{39237596887} a^{4} + \frac{1288088502}{39237596887} a^{3} + \frac{14425083967}{39237596887} a^{2} - \frac{4086108242}{39237596887} a + \frac{14702944257}{39237596887}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $14$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1351880002.32 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_3:S_5$ (as 15T21):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 360
The 12 conjugacy class representatives for $\GL(2,4):C_2$
Character table for $\GL(2,4):C_2$

Intermediate fields

5.5.7254224.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 15 sibling: data not computed
Degree 18 sibling: data not computed
Degree 30 siblings: data not computed
Degree 36 sibling: data not computed
Degree 45 sibling: data not computed
Arithmetically equvalently siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ $15$ ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ ${\href{/LocalNumberField/13.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/17.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ ${\href{/LocalNumberField/23.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ $15$ ${\href{/LocalNumberField/37.5.0.1}{5} }^{3}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/43.5.0.1}{5} }^{3}$ ${\href{/LocalNumberField/47.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
67Data not computed
$101$101.3.0.1$x^{3} - x + 11$$1$$3$$0$$C_3$$[\ ]^{3}$
101.6.3.1$x^{6} - 202 x^{4} + 10201 x^{2} - 124666421$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
101.6.3.1$x^{6} - 202 x^{4} + 10201 x^{2} - 124666421$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$