Normalized defining polynomial
\( x^{15} - 3096 x^{13} - 24768 x^{12} + 2716937 x^{11} + 44214032 x^{10} - 440833995 x^{9} - 16154451432 x^{8} - 166917328956 x^{7} - 903885633936 x^{6} - 2913097505040 x^{5} - 5872510955520 x^{4} - 7487389678400 x^{3} - 5876218348800 x^{2} - 2595175296000 x - 494319104000 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1567340637715370810317104340867709615539728651698449490432000000=2^{15}\cdot 5^{6}\cdot 7^{10}\cdot 29^{2}\cdot 965467^{4}\cdot 3851089843^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $16{,}330.93$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7, 29, 965467, 3851089843$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{5} a^{5} - \frac{2}{5} a^{3} - \frac{1}{5} a^{2}$, $\frac{1}{5} a^{6} - \frac{2}{5} a^{4} - \frac{1}{5} a^{3}$, $\frac{1}{10} a^{7} + \frac{2}{5} a^{4} + \frac{1}{10} a^{3} - \frac{1}{5} a^{2} - \frac{1}{2} a$, $\frac{1}{100} a^{8} - \frac{1}{25} a^{6} + \frac{2}{25} a^{5} + \frac{9}{100} a^{4} + \frac{11}{25} a^{3} - \frac{19}{100} a^{2} + \frac{2}{5}$, $\frac{1}{5600} a^{9} - \frac{1}{350} a^{8} + \frac{3}{175} a^{7} - \frac{4}{175} a^{6} - \frac{519}{5600} a^{5} + \frac{2}{7} a^{4} - \frac{2323}{5600} a^{3} - \frac{87}{700} a^{2} - \frac{33}{280} a + \frac{27}{70}$, $\frac{1}{1265600} a^{10} + \frac{43}{19775} a^{8} + \frac{1479}{39550} a^{7} - \frac{10011}{253120} a^{6} - \frac{2743}{79100} a^{5} - \frac{28631}{253120} a^{4} - \frac{71177}{158200} a^{3} + \frac{32779}{316400} a^{2} - \frac{197}{452} a - \frac{1453}{3955}$, $\frac{1}{50624000} a^{11} - \frac{1}{2531200} a^{10} - \frac{47}{1808000} a^{9} + \frac{211}{1582000} a^{8} - \frac{2146503}{50624000} a^{7} - \frac{212697}{12656000} a^{6} + \frac{994421}{10124800} a^{5} - \frac{2559843}{12656000} a^{4} + \frac{2564223}{6328000} a^{3} - \frac{181047}{395500} a^{2} + \frac{213109}{632800} a + \frac{34823}{158200}$, $\frac{1}{506240000} a^{12} + \frac{31}{126560000} a^{10} - \frac{1223}{31640000} a^{9} - \frac{287169}{72320000} a^{8} - \frac{155769}{4520000} a^{7} - \frac{8679211}{101248000} a^{6} + \frac{4852901}{63280000} a^{5} - \frac{906257}{63280000} a^{4} + \frac{7515107}{15820000} a^{3} - \frac{2628007}{6328000} a^{2} - \frac{122333}{395500} a + \frac{27707}{79100}$, $\frac{1}{1012480000000} a^{13} + \frac{19}{25312000000} a^{12} + \frac{1083}{126560000000} a^{11} - \frac{1227}{15820000000} a^{10} - \frac{33002103}{1012480000000} a^{9} - \frac{528287591}{126560000000} a^{8} - \frac{2953165151}{202496000000} a^{7} + \frac{1781631643}{63280000000} a^{6} + \frac{331680683}{36160000000} a^{5} + \frac{9672743649}{63280000000} a^{4} + \frac{218075969}{1808000000} a^{3} - \frac{245415237}{1582000000} a^{2} + \frac{105064767}{632800000} a + \frac{14459521}{158200000}$, $\frac{1}{3369533440000000} a^{14} + \frac{149}{842383360000000} a^{13} + \frac{51929}{60170240000000} a^{12} - \frac{368107}{105297920000000} a^{11} + \frac{1282052489}{3369533440000000} a^{10} - \frac{47997976959}{842383360000000} a^{9} - \frac{13333997258363}{3369533440000000} a^{8} - \frac{11225994675473}{842383360000000} a^{7} - \frac{396148613027}{842383360000000} a^{6} + \frac{1567652154641}{26324480000000} a^{5} + \frac{56524944926479}{210595840000000} a^{4} + \frac{432416692223}{10529792000000} a^{3} + \frac{3063299673571}{10529792000000} a^{2} + \frac{58306559587}{263244800000} a + \frac{46232636139}{131622400000}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1177083894170000000000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1296000 |
| The 53 conjugacy class representatives for [A(5)^3:2]3 are not computed |
| Character table for [A(5)^3:2]3 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 36 sibling: | data not computed |
| Degree 45 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | R | R | ${\href{/LocalNumberField/11.9.0.1}{9} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }$ | ${\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/17.9.0.1}{9} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | $15$ | R | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | ${\href{/LocalNumberField/37.9.0.1}{9} }{,}\,{\href{/LocalNumberField/37.6.0.1}{6} }$ | ${\href{/LocalNumberField/41.5.0.1}{5} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.6.6.4 | $x^{6} + x^{2} + 1$ | $2$ | $3$ | $6$ | $A_4\times C_2$ | $[2, 2, 2]^{3}$ | |
| 2.6.9.6 | $x^{6} + 4 x^{2} + 8$ | $2$ | $3$ | $9$ | $A_4\times C_2$ | $[2, 2, 3]^{3}$ | |
| $5$ | 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $7$ | 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| $29$ | $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.1.1 | $x^{2} - 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 29.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 965467 | Data not computed | ||||||
| 3851089843 | Data not computed | ||||||